On Centrally Regular Modules and Centrally Semiregular Modules


Adil Kadir Jabbar

College of Science, University of Sulaimani


Abstract
In this paper, two new modules are defined, which we call centrally regular and centrally semiregular
modules and several properties of them are proved. Also, we have determined so many conditions under
which regular (resp. semiregular) modules and centrally regular (resp. centrally semiregular) modules are
equivalent.

Keywords: regular modules, semiregular modules, small modules,centrally regular
modules, centrally semiregular modules.

References:
1. Larsen M. D. and McCarthy P. J.: Multiplicative Theory of Ideals, 1971 Academic Press New York and London. 
2. Jabbar A. K.: Centrally prime rings which arecommutative, Journal of Kirk University, 2006, 1( 2),  108-124. 
3. Blyth T. S. : Module Theory, 1990,Clarendon Press. Oxford.  
4. Kamal M. A. and Yousef A. : On Principally Lifting Modules, International Electronic Journal of Algebra, 2007,  2, 127-137.  
5. Wang Y. and Sun Q. : A Note on cofinitely supplemented modules, International Journal  of Mathematics and Mathematical Sciences, 2007,  ID, 1-5. 
6. Zeng Q. Y. and Shi M. H. : On closed weak supplemented modules, Journal of Zhejiang University Science A, 2006, 7(2), 210-215. 
7. Alkan M. and Ozcan A. C. : Semiregular modules with respect to a fully invariant submodules, Communications in Algebra, 2004, 32, ( 11), 4285-4301.  
8. Nebiyev C. and Pancar A. : Strongly Supplemented Modules, International Journal of Computational  Cognition, 2004, 2( 3),  57-61. 
9. Tuganbaev A. A. : Rings of Quotients and Pierce Stalks, Journal of Mathematical Sciences, 2002, 109 ( 3), 1569-1583. 
10. Wisbauer R. : Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.