Smarandache Idempotents in Certain Types of Group Rings


Parween Ali Hummadi1, Shadan Abdulkadr Osman2

College of Science Education1, College of Science2, Salahaddin University  



Abstract:
In this paper we study S-idempotents of the group ring Z2G where G is a finite cyclic group of
order . We give a condition on such that every nonzero idempotent element of the group ring
Z2G is Smarandache idempotent and we find Smarandache idempotents of the group ring KG
where K is an algebraically closed field of characteristic 0 and is a finite cyclic group.

Keywords: Idempotent, S-idempotent, group ring, algebraically closed field.

References
1. Vasantha Kandasamy W. B.: Smarandache Rings, American Research Press, 2002.
2. Vasantha Kandasamy W. B.: Smarandache special definite algebraic structures, American Research Press, 2009.
3. Vasantha Kandasamy W. B. and Moon chetry K. : Smarandache Idempotents in finite ring Zn G, Scientia Magna. ,2005, 2(1), 179- 187.
4. Rosen K. H. Elementary Number theory and its applications, Addison Welsey, Welsey Longman, 200.
5. Park W. W. The units and Idempotents in the group ring of a finite cyclic group, comm. Korean Math. Soc. 1997, 4(12), 855-864.
6- Park W. S. The Units and Idempotents in the group ring K(Zm x Zn), Comm. Korean Math. Soc., 2000, 4(15), 597-603.
7-D. B. Coleman: shorter Notes: Idempotents in group rings, Proceeding of the American Math. Soc., 1966, 4(17), 962.