Structural Study of SrTiO3 Single Crystal using High Resolution X-ray Diffraction

Aziz Muhemed Abdullah

Faculty of EducationChamchamal, Universirty of Sulaimani  


Strontium titanate, SrTiO3 is one of the perovskite – type crystal that commonly used as a substrate for epitaxial growth of multifunctional oxide films and well-defined TiO2-terminated surface is crucial for the fabrication of oxide hetero-interfaces. Structural properties have a strong effect on thin films characteristics and their applications. Proceeding from this fact, the lattice defects of as-grown or as-annealed SrTiO3 single crystals with a nondestructive technique have been investigated. The structural imperfection and dislocation density (screw and edge types) of STO single crystals with 10x10x1 mm dimension (from crysTec GmbH- Berlin) have been studied using omega scan from high-resolution x-ray diffraction technique, as well as, the symmetric (002) and the skew-symmetric (101) rocking curves (which are sensitive to the structural perfection) also reported. In order to prove the sample quality, the experimental full widths at half maximum (FWHM) of the X-ray rocking curves have been shown. From the FWHMs, the dislocation density (screw and edge types) and the total dislocation density have been calculated. 


Keywords: High resolution x-ray diffraction, Rocking curve, FWHM, Dislocation density 

1-J. B. Goodenough, Rep. Prog. Phys., 67, 1915 (2004).  
2-K. A. Muller, W. Berlinger, and F. Waldner. Phys. Rev. Lett., 21, 814 (1968). 
3-Mats Johnsson and Peter Lemmens, J. Phys.: Condens. Matter (2008). 
4-N. Erdman, L. D. Marks, Surface Science 526, (107–114) (2003). 
5-J. Schlappa, C. F. Chang, Z. Hu, E. Schierle, H. Ott, E. Weschke, G. Kaindl, M. Huijben, G. Rijnders, D. H. A. Blank, L. H. Tjen  and C. Sch¨ußler-Langeheine, J. Phys.: Condens. Matter 24 (2012). 
6-P.A.W. van der Heide, Q.D. Jiang, Y.S. Kim, J.W. Rabalais, X-ray photoelectron spectroscopic and ion scattering study of the  SrTiO3 (001) surface, Surface Science, 473(1– 2), 59–70  (2001). 
7-J. Yamanaka, MATER T JIM, 40 (9), 915-918 (1999).  
8-Mitsuo Yoshiikawa, J. Appl. Phys., 63 (5), 1533-540 (1988). 
9-A. Dejneka, M. Tyunina, J. Narkilahti, J. Levosk, D. Chvostova, L. Jastrabik, V. A. Trepakov Tensile strain induced changes in  the optical spectra of SrTiO3 epitaxial thin films, Physics of the Solid State., 52(10), 2082-2089, (2010).  
10-S. Zollner, A.A. Demkov, R. Liu, P. L. Fejes, R.B. Gregory, J.A. Curless, Z. Yu, J. Ramdani, R. Droopad, T.E. Tiwald, J.N. Hilfiker,  J.A.J. Woollam, Vac. Sci. Technol. B, 18  (4), 2242 (2000)  
11- S. Singh, TeYu Chien, J. R. Guest, and M. R. Fitzsimmons, Phys. Rev. B 85, 115450 (2012).  
12-A. Stashansy, F. Erazo, J. Ortiz and P. Valverde, Philosophical Magazine B, 81 (12) (2001).  [13] Peter W. Norton and Anthony  P. Erwin, J. Vac. Sci. Technol. , A7 (4), 503-508 (1989).  
14-J. G. Bednorz and K. A. Muller, Phys. Rev. Lett. 52, 2289 (1984).  
15-M.D. Biegalski, D.D. Fong, J.A. Eastman, P.H. Fuoss, S.K. Streiffer, T. Heeg, J. Schubert, Journal of Applied Physics 104, 114109 (2008).  
16-H. Adachi. K. Setsune and K. Wasa: Phys. Rev. B. 35, 8824-8825 (1987). 
17-H. Hasegawa, T. Fukazawa and T. Aida: Jpn. J. Appl. Phys, 28, L2210- L2212 (1989). 
18-M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma:  Science, 266, 1540- 1542 (1994). 
19-V. Srikant, J. S. Speck, and D. R. Clarke, J. Appl. Phys. 82, 4286 (1997). [20] Krishan Lal, Pinsa 68A(3), 315-331 (2002). 
21-A. Torabi, S.K. Brierley, P.S. Lyman, W.E. Quinn, W.E. Hoke, JCPDS-International Centre for Diffraction Data, Advances in X-  -  ray Analysis, 42 (2000).  
22-Marcelo Assaoka Hayashi, Rogério Marcon, Revista Physicae 1, CP6165, 13083-970, 20-27 (2000). 
23-Hans J Scheel, Journal of Crystal Growth  211(1-4), 1-12, (2000).  
24-M. Yoshimoto, T. Maeda, K. Shimozono, H. Koinuma, M. Shinohara, O. Ishiyama, F. Ohtani, Appl. Phys. Lett. 65, 3197, 64 (1994).  
25-G. Koster, B. Kropman, G. Rijnders, D. Blank, H. Rogalla: Appl. Phys. Lett. 73, 2920, 64- 67 (1998).  
26-The rocking curves are measured by keeping a constant angle between the source and the detector ~equal to twice the Bragg  angle for the diffracting planes! and then rocking the substrate about the surface normal.  
27-Walter Schottky Institut- Zentralinstitut der Technischen Universität München, High Resolution X-Ray Diffraction, (2009). 
28-James R. Connolly, for EPS400-002, Introduction to X-Ray Powder Diffraction, Spring (2003).  
29-G. Darwin (Phil. Mag. 27, 315-333, 675-690 (1914) Phil. Mag. 43, 800-829, (1922). 
30-P. D. Healey, B. Bao, M. Gokhale, J. E. Ayers and F. C. Jain, Acta. Cryst. , A51, pp. 498503, (1995). 
31-P. Gay, P. B. Hirsch and A. Kelly, Acta. Metallurgica, 1, pp. 315-319 (1953).  
32-C. G. Dunn and E. F. Koch, Acta. Metallurgica, 5, pp. 548-553 (1957). [33] J. E. Ayers, Journal of Crystal Growth, 135, pp. 71-  77 (1994). 
34-Wang Qingxue, Yang Jianrong, Wei Yanfeng, Fang Weizheng and He Li, Research Center for Advanced Materials and Devices,  Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China). 
35-M. Lorenz, M. Brandt, G. Wagner, H. Hochmuth, G. Zimmermann, H. von Wenckstern, and M. Grundmann, 7217:72170N  (2009). 
36-V. Srikant, J. J. Speck, D. R. Clarke, J. Appl. Phys. 82 (1997).  
37-K. Kang and Wei Cai, "Brittle and Ductile Fracture of Semiconductor Nanowires – Molecular Dynamics Simulations",  Philosophical Magazine, 87, 2169 (2007).  
38-Takayuki Konya, The Rigaku journal 25 (2), 1-8 (2009). 
39-J. W. Park, S. H. Baek, C. W. Bark, M. D. Biegalski, and C. B. Eom, “Quasi-Single-Crystal (001) SrTiO3 Templates on Si”,  Applied Physics Letters 95(6), 061902, (2009).  
40-D. H. A. Blank, A. J. H. M. Rijnders, H. Schönherr ir. J. J. Broekmaat ir. D. B. Bijl, Nucleation and growth on SrTiO3 substrates  characterize by ex-situ AFM (s0001465) (2007).