Dielectric Properties of Barium Zirconate Titanate Ceramics Prepared using Hydrothermal Method


Mukhlis M. Ismail
University of Technology, Applied Science Department





Abstract
Barium titanate (BT) with different content of Zr (0.001 and 0.008) is prepared using
hydrothermal method at 150oC for 2h. It is found that with increased of Zr content, the lattice
constant a increases while the lattice constant c decreases. It is observed also that the curie
temperature peak shift to lower temperature and be broadened. The lattice constants have the same
value at Zr content equal to 0.027. For BT samples sintered at 1000oC, the dielectric constant below
Curie temperature is about 2000 and becomes 6000 at Curie temperature. With the increased of
sintered temperature (1200oC), the dielectric constant is about 4000 and becomes 9600 at Curie
temperature (Tc). At Curie temperature the dispersion in BZT1 (x=0.001) is distinct than that of
pure BT. At near T1 (temperature at phase transition from tetragonal to orthorhombic) the little
broadening is observed of BZT1 in comparing with BT. The dispersion of BZT2 (x=0.008) is more
distinct than that of BZT1 (x=0.001) and BT. After adding gradual increasing of Zr, both T1
(tetragonal to orthorhombic phase transition) and Tc are shifting to each other.

Keywords: Hydrothermal method, Dielectric constant, BT & BZT



References
[1] Pfaff G., J. Mater. Chem., 2(6), pp. 591-594, (1992).
[2] Ismail M. M., Ali S. M., Ahmed Z. S., and Cao W. Q., Proceeding of the first scientific conference on
nanotechnology, advanced material and their application 2009.
[3] Gijp S. V., Winnubst L. and Verweij H., J. Mater. Chem., 8(5), pp. 1251-1254, (1998).
[4] Bera J., and Savkar D., J. Electroceram., 11(3), pp. 131-137, (2003).
[5] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G. and Han G., Mater. Lett., 63(2), pp.
239-241, (2009).
[6] An C., Liu C., Wang S. and Liu Y Mater. Res. Bull., 43(4), pp. 932-938, (2008).
[7] Al-Sarraj Z. S. A., Ismail M. M., Ali S. M., and Cao W. Q., Adv. Mater. Res. 324, pp 205-208, (2011).
[8] Lee B. W. and Cho S. B., J. Electroceramics, 13(1-3), pp. 379-384, (2004).
[9] Wu M., Xu R., Feng S. H., Li L., Chen D., and Luo Y. J., J. Mater. Sci., 31(23), pp. 6201-6205, (1996).
[10] Sun W., and Li JMater. Lett. 60(13-14), pp.1599-1602, (2006).
[11] Habib A., Haubner R., and Stelzer N., Mater. Sci. Eng. B, 152(1-3), pp. 60-65, (2008).
[12] Lu S. W., Lee B. I., Wang Z. L., and Samuels W. D J. Cryst. Growth, 219(3), pp. 269-276, (2000).
[13] Zhu X., Zhu J., Zhou S., Liu Z., Ming N., and Hesse D., J. Cryst. Growth, 283(4), pp. 553-562, (2005).
[14] Dutta P. K., and Gergg J. R., Chem. Mater., 4(4), pp. 843-846, (1992).
[15] Vivekanandan R., Philip S., and Kutty T. R. N., Mat. Res. Bull., 22(1), pp. 99-108, (1987).
[16] Lee J. H., Nersisyan H. H., Lee H.H. and Won C. W., J. Mater. Sci., 39(4), pp. 1397-1401, (2004).
[17] Moura F., Simoes A. Z., Stojanovic B. D., Zagheta M. A., Longo E., and Varela J. A., J. Alloys
compound, 462(1-2), pp. 129-134, (2008).

[18] Hino T., Nishida M., Araki T., Ohno T., Kawahara T., Murasugi M., Tabata H., and Kawai T., JLMN-
Journal of Laser Micro/Nanoengineering 2(3), pp. 166-169, (2007).

[19] Cao W. Q., Li F. L., Ismail M. M., and Xiong G., Jpn. J. Appl. Phys. 51(), pp. 041503-4, (2012).
[20] Ravez J. and Simon A., Solid State Sci. 2(5), pp. 525-529, (2000).
[21] Marques L.G.A., Cavalcante L.S., Simo ̃es A.Z., Pontes F.M., Santos-Ju ́nior L.S., Santos M.R.M.C.,
Rosa I.L.V., Varela J.A., and Longo E., Mat. Chem. Phys. 105(2-3), pp.293–297, (2007).
[22] Moura F., Simo ̃es A.Z., Stojanovic B.D., Zaghete M.A., Longo E., Varela J.A., Journal of Alloys and
Compounds 462, pp.129–134, (2008).
[23] Ismail M. M., "Crystal Structure and Morphology of Nano Ba(Zr,Ti)O3 Prepared Using Hydrothermal
Method" Ph. D Thesis (2009).
[24] Cao W. Q., Yang L., Ismail M. M., and Feng P., Ceramic Intern. 37, 1587–1591, 2011