Enhancement efficiency of P3HT:PCBM solar cell by different treatment annealing


Abdullah  A. Hussein1,  Waleed A. Hussain2,  Hussein F. Al-luaiby2,  Tamara  Basova3 & Aseel K. Hassan4

Polymer Research Centre, University of Basrah, 2 college of education, University of Basrah, 3 Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia, 4 Materials and Engineering Research Institute, Sheffield Hallam University


Abstract
Solvent Vapor Annealing (SVA) followed by Post Thermal Annealing (SVA-PA) are demonstrated as attractive methods to anneal polymer blend films and represent a very useful process to control the morphology for high performance polymer solar cells (PSCs). It is found that compared with general annealing processes, the crystallinity of regioregular poly (3-hexylthiophene) (rr-P3HT) has enhanced by performing SVA-PA on freshly deposited films. In this work we have investigated thin film blend produced from P3HT and [6,6]-phenyl-C61 butyric acid methylester (PCBM) materials. This photoactive layer is sandwiched between an anode composed of indium tin oxide (ITO)/poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) gold nanoparticles (AuNPs)  and Al as the cathode  layer. Atomic force microscopy (AFM) study reveals that the SVA annealed films exhibit smooth surface and homogenous conductivity distribution. Moreover, an enhanced light harvesting and increased crystallinity of P3HT in the active layer are observed by UV–vis absorption and X-ray diffraction (XRD). We have seen that thermal annealing significantly improves the optical absorption ability for all treatment. We have also the current density- voltage characteristics  and External quantum efficiency (EQE) of different thermal annealing.

Key Words: 

Solvent vapor annealing-

Post annealing

P3HT:PCBM

nanoparticle 

Refrences 

       [1] H. Lv, X. Zhao, W Xu, H. Li, J. Chen, X. Yang, Organic Electronics 14 (2013) 1874–1881 

       [2] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat. Photonics 6 (2012) 153–161.

[3]     He Z., Zhong C., Huang X., Wong W.-Y., Wu H., Chen L., Su S. and Cao Y., Adv. Mater. 23, (2011) 4636.

[4]     Zhou H., Yang L. and You W., Macromolecules 45, (2012) 607.

[5]     Li X., Choy W. C. H., Huo L., Xie F., Sha W. E. I., Ding B., Guo X., Li Y., Hou J., You J. and Yang Y., Adv. Mater. 24, (2012) 3046. 

[6]     G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 4, (2005), 864.

[7]     M. Reyes-Reyes, K. Kim, D. L. Carroll, Appl. Phys. Lett. 87, (2005) 083 506.

[8]     G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. , 98 (2005), 043 704.

[9]     W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. , 15 (2005) 1617.

[10]  T. Wang, A. J. Pearson, D. G. Lidzey,  R. A. L. Jones, 21 (2011)1383–1390. 

[11]  N. D. Treat, C. G. Shuttle, M. F. Toney, C. J. Hawker, M. L. Chabinyc, Journal of Materials Chemistry,21(2011)15224–15234. 

[12]  Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv.Functional Mate., 18(2008) 1783–1789. 

[13]  B. Schmidt-Hansberg, M. Sanyal, N. Grossiord, Y. Galagan, M. Baunach, M.F.G. Klein, A. Colsmann, P. Scharfer, U. Lemmer, H. Dosch, J. Michels, E. Barrena, W. Schabel, Solar Energy Mater. .Solar Cells 96(2012)195–201. 

[14]  G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv.Functional Mater.17 (2007) 1636–1644. 

[15]  G. Wei, S. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 1 (2011)184–187. 

[16]  H. Tang, G. Lu, L. Li, J. Li, Y. Wang, X. Yang, J.. Mater. Chem.20 (2010) 683–688. 

[17]  T. A. Bull, L. S. C. Pingree, S. A. Jenekhe, D. S. Ginger, C. K. Luscombe, ACSNano3 (2009) 627–636.

[18]  R. Hegde, N. Henry, B. Whittle, H.D. Zang, B. Hu, J.H. Chen, K. Xiao, M. Dadmun, Sol. Energy Mater. Sol. Cells 107 (2012) 112–124.

[19]  G. de Luca, A. Liscio, P. Maccagnani, F. Nolde, L. M. Scolaro, V. Palermo, K. M€ullen and P. Samor, Soft Matter., 4 (2008), 2064.

[20]  V. Palermo and P. Samor, Angew. Chem., Int. Ed. , 46  (2007) 4428.

[21]  J. M. Mativetsky, M. Kastler, R. C. Savage, D. Gentilini, M. Palma, W.Pisula, K.M€ullen , P. Samor, Adv. Funct.Mater. , 19, (2009) 2486.

[22]  A. Datar, R. Oitker and L. Zang, Chem. Commun., (2006), 1649.

[23]  E. Treossi, A. Liscio, X. Feng, V. Palermo, K.M€ullen and P. Samor_ı, Small, 5(2009), 112.

[24]  H.-Y. Chen, J.-L. Wu, C.-T. Chen, C.-T. Chen,. 48 (2012) 1012–1014.

[25]  S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, M. Chhowalla, J. Mater. Chem. 18 (2008) 306–312.

[26]  A. Amassian, V.A. Pozdin, R. Li, D.-M. Smilgies, G.G. Malliaras, J. Mater. Chem. 20 (2010) 2623–2629.

[27]  A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao and Y. Xia, Mater. Today, 11 (2008) 38.

[28]  G. de Luca, A. Liscio, P. Maccagnani, F. Nolde, V. Palermo, K. M€ullen and P. Samor_ı, Adv. Funct. Mater., (2007), 17, 3791.

[29]  M. J. Beliatis, S. J. Henley, S. Han, K. Gandhi, A. A. D. T. Adikaari,Z.E.Stratakis, E.Kymakis, S. R. P. Silva, Phys. Chem. Chem. Phys., 15, (2013) 8237

[30]  T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S.H. Liou , P. H. Yeh, C. H. Yang, Thin Solid Films, 516 (2008) 3138–3142.

[31]  Y.C. Huang, Y.C. Liao, S.S. Li, M.C. Wu, C.W. Chen, W.F. Su, Solar Energy Materials and Solar Cells 93 (2009) 888–892. 

[32]  G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Materials 4 (2005) 864–888.

[33]  H.Y. Park, K. Kim, D.Y. Kim, S.K. Choi, S.M. Jo, S.Y. Jang, Journal of Materials Chemistry 21 (2011) 4457–4464.

[34]  M.Y. Chiu, U.S. Jeng, C.H. Su, K.S. Liang, K.H. Wei, 20 (2008) 2573–2578.

[35]  H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Adv. Funct. Mater. 14 (2004) 1005.

[36]  D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, Nanotechnology 15 (2004) 1317.

[37]  X. Yang, J.K.J. van Duren, R.A.J. Janssen, M.A.J. Michels, J. Loos, Macromolecules 37 (2004) 2151.

[38]  Ma W. L., Yang C. Y., Gong X., Lee K. and Heeger A. J., Adv. Funct. Mater. 15,1617 (2005).

[39]  W.C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson,  J.-S. Kim, |J. Am. Chem. Soc. 2011, 133, 9834–9843

[40]  Baibarac, M.; Lapkowski, M.; Pron, A.; Lefrant, S.; Baltog, I. J. Raman Spectrosc. 1998, 29, 825–832. [41] Gao, Y.; Gery, J. K. J. Am. Chem. Soc. 2009, 131, 9654–9662.

[42]  Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J. S. J. Am. Chem. Soc. 2011, 133, 9834–9843

[43]  G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron,M. Lapkowski, S.J. Lefrant, Phys. Chem. 100 (1996) 12532.

[44]  Y. Xuan, Y.ming, H.yang, ZHANG Jian-jun, ZHAO Gengshen , Z. Ying.  Optoelectron. Lett. 9.4 · (2013) 0275.

[45]  Hu Z., Zhang J. and Zhao Y., Org. Electron. (2012) 13, 142.