Synthesis and optical band gap investigation of PVA/CdS nanocomposite films


Omed Gh. Abdullah

Faculty of Science and Science Education, University of Sulaimani  



Abstract
The nanocomposites of polyvinyl alcohol PVA with different concentration of cadmium sulfide nanoparticles CdS-NPs were obtained using chemical reduction route and casting technique. The effects of CdS concentrations on the optical properties of the PVA films were studied in the regions near-infrared, ultraviolet, and visible wavelength, (190-1100) nm. The obtained optical parameters were found to be strongly affected by CdS contents. From the derivation of Tauc's relation, it was found that the direct allowed transition was more probable in both CdS/PVA nanocomposite and CdS-NP. The results indicate that the obtained values of optical absorption edge and energies band gap decreases with increasing salt contents, as well as the reduction of the width of the tail localized states was observed. The study has been also extended to include the estimating of CdS particle size from the energies band gap for the investigated nanocomposite films. 

Key Words:  Nanocomposite CdS nanoparticle optical band gaps particle size 


References

[1]    B. Jaleh, N. Shahbazi, Applied Surface Science 313: 251-258 (2014).

[2]    Y. Moon, G. Jung, J. Yun, H. Kim, Materials Science and Engineering B 178: 1097-1103 (2013).

[3]    S. Padmaja, S. Jayakumar, R. Balaji, C. Sudakar, M. Kumaravel, V. Rajendran, M. Rajkumar, A.V. Radhamani, Materials Science in Semiconductor Processing 16: 1502-1507 (2013).

[4]    A. Zhu, A. Cai, W. Zhou, Z. Shi, Applied Surface Science 254: 3745-3752 (2008).

[5]    P.P. Jeeju, S. Jayalekshmi, K. Chandrasekharan, P. Sudheesh, Optics Communications 285: 5433-5439 (2012).

[6]    J. Xu, X. Cui, J. Zhang, H. Liang, H. Wang , j. Li, Bull. Mater. Sci. 31: 189-192 (2008).

[7]    B. Ramaraj, S.K. Nayak, K.R. Yoon, Journal of Applied Polymer Science 116: 1671-1677 (2010).

[8]    S. Gandhi, R.H.H. Subramani, T. Ramakrishnan, A. Sivabalan, V. Dhanalakshmi, M.R.G. Nair, R. Anbarasan, Journal of Materials Science 45: 1688-1694 (2010).

[9]    R.K. Karimi, A.B. Shamili, A. Aslani, K. Kaviani, Physica B 405: 3096-3100 (2010).

[10]  O.G. Abdullah, S.R. Saeed, Chemistry and Materials Research 3: 19-24 (2013).

[11]  D. Kumar, S.K. Jat, P.K. Khanna, N. Vijayan, S. Banerjee, International Journal of Green Nanotechnology 4: 408-416 (2012).

[12]  R. Venckatesh, K. Balachandaran, R. Sivaraj, International Nano Letters 2: 15, (2012).

[13]  S. Mallakpour, M. Dinari, Journal of Reinforced Plastics and Composites 32: 217-224 (2013).

[14]  U. Baishya, D. Sarkar, Bulletin of Materials Science 34: 1285-1288 (2011).

[15]  X.F. Qian, J. Yin, J.C. Huang, Y.F. Yang, X. X. Guo, Z.K. Zhu, Materials Chemistry and Physics 68: 95-97 (2001).

[16]  D.S. Yoo, J.D. Lee, S.Y. Ha, I.G. Kim, Journal of the Korean Physical Socity 56: 1807-1813 (2010).

[17]  A. Kharazmi, E. Saion, N. Faraji, N. Soltani, A. Dehzangi, Chin. Phys. Lett. 30: 057803 (2013).

[18]  P.K. Khanna, R.R. Gokhale, V.V.V.S. Subbarao, N. Singh, K.W. Jun, B.K. Das, Mater. Chem. Phys. 94: 454-459 (2005).

[19]  F. El-Tantawy, K.M. A-Kader, F. Kaneko, Y.K. Sung, European Polymer Journal 40: 415-430 (2004).

[20]  H. Wang, P. Fang, Z. Chen, S. Wang, Applied Surface Science 253: 8495-8499 (2007).

[21]  D. Saikia, P.K. Saikia, P.K. Gogoi, M.R. Das, P. Sengupta, M.V. Shelke, Materials Chemistry and Physics 131: 223-229 (2011).

[22]  O.G. Abdullah, B.K. Aziz, D.M. Salh, Indian Journal of Applied Research 3: 477-480 (2013).

[23]  A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, M.Z.A. Yahya, International Journal of Applied Science and Technology 3: 11-38 (2013).

[24]  D.L. Wood, J. Tauc, Phys. Rev. B 5:3144 (1972).

[25]  N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials. Clarendon press, Oxford (1979).

[26]  E.M. Vinod, R. Naik, A.P.A. Faiyas, R. Ganesan, K.S. Sangunni, Journal of Non-Crystalline Solids 356: 2172-2174 (2010).

[27]  R.A. Chikwenze, M.N. Nnabuchi, Chalcogenide Letters 7: 389-396 (2010).

[28]  F.H. Abd El-Kader, S.A. Gafer, A.F. Basha, S.I. Bannan, M.A.F. Basha, J App1 Po1ym Sci 118: 413420 (2010). 

[29]  R. Seoudi, A.B. El-Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, R.A. Ramadan, Journal of Applied Sciences Research 8: 658-667 (2012).

[30]  A. Miller, Handbook of Optics, Vol. l, McGraw-Hill, New York (1994).

[31]  V. Raja, A.K. Sarma, and V.V.R.N. Rao, Materials Letters 57: 4678-4683 (2003).

[32]  F.F. Muhammad, K. Sulaiman, Measurement 44: 1468-1474 (2011).

[33]  N.A. El-Zaher, W.G. Osiris, J Appl Polym Sci 96:1914-1923 (2005).

[34]  V.I. Fediv, G.Y. Rudko, A.I. Savchuk, E.G. Gule, A.G. Voloshchuk, Semiconductor physics, quantum electronics and optoelectronics 15: 117-123 (2012).

[35] L.E. Brus, J. Chem. Phys. 80: 4403-4409 (1984).