Issues‎ > ‎vol17n3‎ > ‎

Miscut measuring of SrTiO3 single crystal using high resolution X-ray diffraction

Aziz M. Abdullah1, Salah R. Saeed1

1Department of Science, College of Basic Education, University of Charmo, Chamchamal, Kurdistan Region, Iraq

Strontium titanate (SrTiO3) is one of the perovskite type metal oxides with multifunctional properties and it has a lot of applications in various sectors of technology. In
this paper, we obtained the miscut angles from Bragg peak after performing
ω scans of
HRXRD at different angles of
φ with intervals of 90. The obtained results located
between 0.2015
and 0.4302using two ways (mathematically and Epitaxy software),
which is considered as a tolerance limit (less than 1°) to cut the substrates.

Key Words: Strontium titanate (SrTiO3) High resolution X-ray diffraction Substrate Thin films Miscut 


[1] Muller, K. A., Berlinger, W. and Waldner, F., “Characteristic Structural Phase Transition in Perovskite-type
Compounds”, Phys. Rev. Lett., Vol. (21), pp. 814-817, (1968).
[2] Bachelet, R., Sanchez, F., Santiso, J., Munuera, C., Ocal, C. and Fontcuberta, J., “Self-Assembly of SrTiO3 (001)
Chemical-Terminations: A Route for Oxide-Nanostructure Fabrication by Selective Growth”, Chem. Mater, Vol. (21),
pp. 2494-2498, (2009).
[3] Peng, L., Xi, X., Moeckly, B. and Alpay, S.,”Strain relaxation during in situ growth of SrTiO3 thin films”, Appl.
phys. Lett. Vol. (83), pp. 4592-4594, (2003).

[4] De Groot, F. M. F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G. A. and Petersen, H., “Oxygen 1S x-ray-
absorption edges of transition-metal oxides”, Phys. Rev. B., Vol. (40), pp. 5715–5723, (1989).

[5] Kuiper, B., Blok, J. L., Zandvliet, H. J., Blank, D. H. A., Rijnders, G. and Koster, G., ”Self-organization of SrRuO3
nanowires on ordered oxide surface terminations”, MRS Communications, Vol. (1), pp 17-21. (2011).
[6] Yoshimura, T., Fujimura, N. and Ito, T., “ The initial stage of BaTiO3 epitaxial films on etched and annealed SrTiO3
substrates”, J. Cryst. Growth, Vol. (174), pp. 790-795, (1997).
[7] Moller, P. J., Komolov, S. A., Lazneva, E. F. ,“Selective growth of a MgO (100)-c (2x2) superstructure on a
SrTiO3(100)-(2x2) substrate”, Surf. Sci., Vol. (425), pp. 15-21, (1999).

[8] Reagor, D. W. and Butko, V. Y., “Highly conductive nanolayers on strontium titanate produced by preferential ion-
beam etching”, Nat. Mat., Vol. (4), pp. 593-596, (2005).

[9] Yamanaka, J., “Distribution of dislocations in SrTiO3 single crystal”, Mater. Trans., JIM, Vol. (40), pp. 915-918,
[10] Yoshiikawa, M., “Dislocations in Hg1−xCdxTe/Cd1−z ZnzTe epilayers grown by liquid-phase epitaxy”, J. Appl.
Phys. Vol. (63), pp. 1533-1540, (1988).
[11] Adachi, H., Setsune, K. and Wasa, K., “Superconductivity m (La0.9Sr0.1)2 Cu04 single-crystal films”, Phys. Rev. B.,
Vol. (35), pp. 8824-8825,. (1987).
[12] Hasegawa, H., Fukazawa,T. and Aida, T., “Contact between High-Tc
Superconductor and Semiconducting Niobium-Doped SrTiO3”, Jpn. J. Appl. Phys., Vol. (28), pp. 2210 – 2212, (1989).

[13] Blank, D. H. A., Rijnders, A. J. H. M., Schönherr, H., Broekmaat, J. J. and Bijl, D. B., ”Nucleation and growth on
substrates characterize by ex-situ AFM”, (s0001465), (2007).
[14] Cho, G., Yamamoto M., and Endo, Y., “Surface features of self-organized SrTiO3 (001) substrastes inclined in
  [100] and [110] directions”, Thin Solid Films, Vol (464), pp. 80-84, (2004).
[15] Jiang, J. C., Tian , W., Pan, X. Q., Gan Q. and Eon, C. B., “Domain structure of epitaxial SrRuO3 thin films on
miscut(001) SrTiO3 substrate”, Appl. phys. lett., Vol. (72). ), pp. 2963-2965, (1998).

[16] Chen, Y. B., Katz, M. B. and et al. Pan, X. Q., Das, R. R., Kim, D. M., Baek S. H. and Eom, C. B., “Ferroelectric
domain structures of epitaxial (001) BiFeO3 thin films”, Appl. Phys. Lett., Vol. (90), pp. 072907, (2007).
[17] Zhang, Z. and Lagally, M. G., “Atomistic Processes in the Early Stages of Thin-Film Growth”, Science, Vol.
(276). pp. 377-383, (1997).
[18] Chen, Y., “Microstructure of perovskite oxide thin films grown on miscut/small lattice-mismatched substrates”,
(Doctoral Dissertation), University of Michigan, (2008).
[19] Koster, G., Rijnders, G., Blank, D. and Rogalla, H., “Surface morphology determined by (001) single-crystal
SrTiO3 termination, physica C: SrTiO3 Superconductivity”, Science, Vol. (339), pp. 215-230, (2000).

[20] Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto,
M. and Koinuma, H., “Atomic Control of the SrTiO3 Crystal Surface”, Science. Vol. (266), pp. 1540-1542, (1994).
[21] Scheel, J. H., “Historical aspects of crystal growth technology”, J. Cryst. Growth, Vol. (211), pp. 1-12, (2000).
[22] Abdullah., A. M., “Structural Study of SrTiO3
single crystal using High resolution X- ray diffraction”, (JZS-A),Vol. (15). pp. 91-96,(2013).
[23] Lorenz, M., Brandt, M., Wagner, G., Hochmuth, H., Zimmermann, G., von Wencksterna, H. and Grundmann, M.,
“MgZnO: P Homoepitaxy by Pulsed Laser Deposition: Pseudomorphic Layer-by-Layer Growth and High Electron
Mobility”, Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 7217, 72170N, (2009).
[24] Sass, J., Mazur, K., Surma, B., Eichhorn, F., Litwin, D., Galas, J. and Sitarek, S., “X-ray studies of ultra-thin Si
wafers for mirror application”, Nucl. Instr. Meth. Phys. Res. B., Vol. (253), pp. 236-240, (2006).