Provenance of heavy minerals from recent sediments of Balakyan River, Kurdistan Region, Iraq

Faraj H. Tobia & Rand H. Kafy

Department of geology, Salahaddin University, Kurdistan Region, Iraq



Heavy mineral assemblages of the sediments in Balakyan River have been studied to determine their concentrations and provenance. Twelve sediment samples were analyzed for heavy mineral assemblage determination. The unstable heavy minerals (pyroxene and amphibole) represent more than 50%. The mineral chemistry and petrographic studies refer to the predominant clinopyroxene mineral is diopside. Actinolite, tremolite, and magnesiohornblende are common calc-amphibole in the sediments. The ultrastable heavy minerals are present in trace amounts. According to the mineral chemistry the clinopyroxene is derived from basic igneous rocks crystallized at 1150-1220⁰C and low pressure. Amphibole and epidote crystallized under low temperature and/or formed under low grade metamorphism. The detrital chromian spinel is derived from basic and ultrabasic igneous rocks of Alpine type peridotite formed in fore-arc. The probable source of these assemblages is Ophiolite Complex to the north of the studied area (north Iraq) and igneous parts of Walash Series and Red Bed Series also the sedimentary rocks of Shiranish and Tanjero formations.

Key Words: Heavy minerals, Balakyan River, Walash Series, Peridotite


[1] W.R. Dickinson, “Tectonic and sedimentation”, Spec Publ. Soc. Econ. Paleontology. Mineral Vol. 22, pp 1-27. (1974).

[2] K. Fujioka, and S. Saito, “Composition of Heavy minerals from sands and sandstones of the Izu-Bonin Arc, Leg 126”, Proceedings of the Ocean Drilling Program, Scientific Results Vol. 126, pp 155-162. (1992).

[3] E. O. Joshua, O.A. Oyebanjo, N.N. Jibiri, and O. O. Fasunwon, “Osun river basin sediments heavy mineral distribution”, The Pacific Journal of Science and Technology Vol. 11, No.1, pp 598-605. (2010).

[4] Z. Stevanovic, and M. Markovic, “Hydrogeology of Northern Iraq: Climate, Hydrology, Geomorphology, Geology”, 2nd edition, FAO Coordination Office for northern Iraq, Water Resources and Irrigation Sub-Sector Vol. 1, pp 194. (2001).

[5] T. Buday, “The regional geology of Iraq”, Vol.1, Stratigraphy and paleogeography, Dar Al-Kutub Pub., Mosul University, Iraq, pp 445. (1980).

[6] S. Z. Jassim, and J. C. Goff, “Geology of Iraq”, Dolin, Prague and Moravian Museum, Brno, pp 318. (2006).

[7] K.H. Karim, “Basin analysis of Tanjero Formation in Sulaimaniya area, NE-Iraq”, Unpublished Ph.D. thesis, University of Sulaimani, pp 135. (2004).

[8] K.H. Karim, “Environment of Tanjero Formation as inferred from sedimentary structures in Sulaimaniya area, Kurdistan Region, NE-Iraq”, Kurdistan Academicians Journal Vol. 4, No. 1. (2006).

[9] G.P.R. Cobbett, “Geology of the Kani Rash area”, Manuscript report no. 270, GEOSURV, Baghdad, Iraq. (1957).

[10] C.M.G. Bolton, “The geology of Rania area”, Site Investigation Company Ltd., England, GEOSURV, Unpub. Rep. No. 271, pp 118. (1958).

[11] R.C. Bellen, H.V. Dunnington, R. Wetzel, and D.M. Morton, “Lexique stratigraphique international. Asie”, Fasc. 10a, Iraq, Center Natu. Researche Scientifique, Paris, pp 336: (1959).

[12] S. T. Al-Barazinjy, “Stratigraphy and basin analysis of Red Bed Series in NE-Iraq, Kurdistan Region”, Unpublished Ph.D. Thesis, University of Sulaimani, pp 143. (2005).

[13] W.A. Deer, R.A. Howie, and J. Zussman, “An introduction to the rock- forming minerals”, 2nd ed., Longman House, New York, pp 696. (1992).

[14] M.A. Mange, and H.F.W. Maurer, “Heavy Minerals in Colour”, Chapman and Hall, London, pp 147. (1992).

[15] W.C. Krumbein, and L.L. Sloss, “Stratigraphy and sedimentation”, Freeman, San Francisco, pp 660. (1963).

[16] F.J. Pettijohn, “Sedimentary rocks”, 3rd ed., Harper and Row, New York, pp 628. (1975).

[17] B.E. Leake, “Nomenclature of amphiboles”, Mineralogical Magazine Vol. 42, pp 533-563. (1978).

[18] B.E. Leake, A.R. Woolley, C.E.S. Arps, W.D. Birch, M. C. Gilbert, J.D. Grice, F.C. Hawthorne, A. Kato, H.J. Kisch, V.G. Krivovichev, K. Linthout, J. Laird, J.A. Mandaring, W.V. Maresch, E.H. Nickel, N.M.S. Rock, J.C. Schumacher, D.C. Smith, N.C.N. Stephenson, L. Ungaretti, E.J.W. Whittaker, G. Youzhi, “Nomenclature of amphiboles, report of the subcommittee on amphiboles of the international mineralogical association”, Commission on new minerals and mineral names. Canadian Mineralogist Vol. 35, pp 219-246. (1997).

[19] E.J. Pettijohn, “Sedimentary Rocks”, Harper Bros, New York. Pp 718. (1956).

[20] P.F. Kerr, “Optical mineralogy”, 3rd edition, McGraw Hill, New York, pp 442. (1959).

[21] L. G. Berry, and B. H. Mason, “Mineralogy, Concepts, Descriptions, Determinations”, Freeman, New York, pp 561. (1959).

[22] F.J. Pettijohn, P.E. Potter, and R. Siever, “Sand and sandstone”, Springer-Verlag, New York, pp 618. (1973).

[23] H. Fuchtbauer, “Sediments and sedimentary rocks”, E. Schweizerbart sche verlags buch hand lung (Nagele V. Ober miller), Stuttgart, pp 464. (1974).

[24] W.A. Deer, R.A. Howie, and J. Zussman, “ Disilicates and Ring Silicates”, Vol. 1B, 2nd end. The Geological Society, London. (1997).

[25] R.L. Folk, “Petrology of sedimentary rocks”, Hemphill Publishing Company, Texas, pp 182. (1974).

[26] M. E. Tucker, “Sedimentary petrology: an introduction to the origin of sedimentary rocks”, Blackwell Science Ltd., Oxford. (1981).

[27] J. A. Speer, “Zircon review in mineralogical society of America”, short course notes Vol. 5, pp 67-112. (1982).

[28] P. Turner, “Continental red beds”, Developments in Sedimentology 29, Elsevier Scientific Publishing Company, Amsterdam, pp 562. (1980).

[29] R. Weibel, and H. Friis, “Alteration of opaque heavy minerals as a reflection of the geochemical conditions in depositional and diagenetic environments”, in: Mange, M.A. and Wright, D.T. (eds) Heavy minerals in use. Elsevier, Amsterdam, Development in Sedimentology Vol. 58, pp 277-303. (2007).

[30] I. Butler, D. Rickard, and S. Grimes, “Framboidal Pyrite: self Organization in the Fe-S System”, Journal of Conference Abstracts Vol. 5, No. 2, pp 276-277. (2000).

[31] M. Morimoto, “Nomenclature of pyroxenes”, Mineralogical Magazine Vol. 52, pp 535- 550. (1988).

[32] Ch. Chalokwu, and T.B. Hanley, “Thermobarometry and calculated fluid composition of migmatitic schist in contact zone of the Farmville granite, Alabama piedmont”, Geological Society of America, abstracts with programs Vol. 22, pp 258. (1990).

[33] C.I. Chalokwu, and S.M. Kuehner, “Mineral chemistry and thermometry of a southern Appalachian amphibolite with epidote + quartz symplectite”, American Mineralogist Vol. 77, pp 617-730. (1992).

[34] A. Soesoo, “A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization P-T estimations”, Geology Foren Stockholms Farhand Vol. 119, pp 55-60. (1997).

[35] R. Johnson, A. Jaques, R. Hickey, C. Mckee, B. Chappell, “Manam Island, Papua New Guinea: petrology and geochemistry of a low-TiO2 basaltic island- arc volcano”, Journal of Petrology Vol. 26, pp 283-323. (1985).

[36] A. Hietanen, “Distribution of elements in biotite- hornblende pairs and in an orthopyroxene- clinopyroxene pair from zoned plutons, northern Sierra Nevada”, California Contrib. Mineral. Petrology Vol. 30, pp 16l-176. (1971).

[37] A. Hietanen, “Amphibole pairs, epidote minerals, chlorite, and plagioclase in metamorphic rocks, Northern Sierra Nevada, California”, American Mineralogist Vol. 59, pp 22-40. (1974).

[38] W. G. Ernst, and J. Liu, “Experimental phase-equilibrium study of Al and Ti contents of calcic amphibole in MORB: a semi- quantitative thermobarometer”, American Mineralogist Vol. 83, pp 952-969. (1998).

[39] G. Durn, D. Aljinovic, M. Crnjakovic, B. Lugovic, “Heavy and light mineral fraction indicate polygenesis of extensive Terra Rossa soils in Istria, Croatia”, in: Mange, M.A. and Wright, D.T. (eds) Heavy minerals in use, Elsevier, Amsterdam, Development in Sedimentology Vol. 58, pp 701- 737. (2007).

[40] T. Armbrusterl, P. Bonazzi, M. Akasaka, V. Bermanec, C. Chopin, R. Giere, H.A. Soraya, A., Menchetti, S. Liebscher, Y. Pan, and M. Pasero, “Recommended nomenclature of epidote group minerals”, European Journal of Mineralogy Vol. 18, pp 551- 567. (2006).

[41] J.P. Moody, D. Meyer, J.E. Jenkins, “Experimental characterization of the green schist/amphibole boundary in mafic system”, American Journal of Science Vol. 283, pp 48-92. (1983).

[42] M.A. Mange, A.C. Morton, “Geochemistry of heavy minerals”, in Mange, M.A. & Wright, D.T., (Eds.) Heavy Mineral in Use. Developments in Sedimentology Vol. 58, pp 345-391. (2007).

[43] T.N. Irvine, “Chromian spinel as a petrogenetic indicator, part 1, theory”, Canadian Journal of Earth Science Vol. 2, pp 648- 674. (1965).

[44] T.N. Irvine, “Chromian spinel as a petrogenetic indicator”, Part 2, Petrologic applications. Canadian Journal of Earth Science Vol. 4, pp 71- 103. (1967).

[45] H.J.B. Dick, T. Bullen, “Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas”, Contributions to Mineralogy and Petrology Vol. 86, pp 54-76. (1984).

[46] K. Hisada, and S. Arai, “Detrital chromian spinel in the Cretaceous Sanchu sandstones, Central Japan: indicator of serpentinite protrusion into a fore-arc region”, Paleogeography Palaeoclimatology Palaeoecology Vol. 105, pp 95-109. (1993).

[47] Y.I. Lee, “Geotectonic significant of detrital chromian spinel: a review”, Geosciences journal Vol. 3, No. 1, pp 23-29. (1999).

[48] K. Hisada, Th. Bunyoungkul, and P. Charusiri, “Detrital chromian spinels in Devonian-Carboniferous sandstones of Hikoroichi area, NE Japan: their provenance and tectonic relationship”, Science Report Institute of Geosciences, University of Tsukuba, Sec. B Vol. 23, pp 39- 51. (2002).

[49] A.I. Al-Juboury, M.M. Ghazal, and T. McCann, “Detrital chromian spinels from Miocene and Holocene sediments of northern Iraq: provenance implications”, Journal of Geosciences Vol. 54, pp 289- 300. (2009).

[50] T. Augé, “Chromite deposits in the northern Oman Ophiolite: mineralogical constraints”, Mineralium Deposita Vol. 22, pp 1-10. (1987).

[51] A.H. Ahmed, and S. Arai, “Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications”, Contributions to Mineralogy and Petrology Vol. 143, pp 263–278. (2002).

[52] A.W. Mohamed, and M.A. Dar, “Cluster analysis and mineral provenance of recent sediments and their relation to the continental margin activity along the Red Sea”, Egyptian Journal of Aquatic Research Vol. 31, No. 2, pp 29-44. (2005).

[53] P.V. Markevich, A.I. Malinovsky, M.I. Tuchkova, S.D. Sokolov, and V.N. Grigoryev, “The use of heavy minerals in determining the provenance and tectonic evolution of Mesozoic and Cenozoic sedimentary basins in the continent-Pacific Ocean transition zone: examples from Sikhote-Alin and Koryak-Kamchatka Regions (Russian Far East) and Western Pacific”, in: Mange, M.A. and Wright, D.T. (eds) Heavy minerals in use, Elsevier, Amsterdam, Development in Sedimentology Vol. 58, pp 789-822. (2007).

[54] F.F. Bonavia, V. Diella, and A. Ferrario, “Precambrian podiform chromitites from Kenticha Hill, southern Ethiopia”, Economic Geology Vol. 88, pp 198-202. (1993).

[55] P.K. Kepezhinskas, R.N. Taylor, and H. Tanaka, “Geochemistry of plutonic spinels from the North Kamchatka Arc: comparisons with spinels from other tectonic settings”, Mineralogical Magazine Vol. 57, pp 575-589. (1993).

[56] S.H. Bloomer, and R.L. Fisher, “Petrology and geochemistry of igneous rocks from the Tonga Trench- a nonaccreting plate boundary”, Journal of Geology Vol. 95, pp 469-495. (1987).

[57] H.O. Cookenboo, R.M. Bustin, K.R. Wilks, “Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: implications for orogeny in the Canadian Cordillera”, Journal of Sedimentary Researches Vol. 67, pp 116-123. (1997).

[58] I. Uysal, M. Tarkian, M.B. Sadikler, and C. Sen, “Platinum group element geochemistry and mineralogy of Ophiolitic chromitites from the Kop Mountains, Northeastern Turkey”, Canadian Mineralogist Vol. 45, pp 355-377. (2007).

[59] V.S. Kameretsky, A.J. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks”, Journal of Petrology Vol. 42, pp 655- 671. (2001).

[60] Y.O. Mohammad, “Petrology of ultramafic and related rocks along Iraqi Zagros Thrust Zone”, Unpublished Ph.D. Thesis, Osaka Prefecture University, pp 138. (2008).