The occurrence of L-GALACTONO- 1, 4-LACTONE DEHYDROGENASE (L-GalLDH) in L - ascorbate biosynthesis pathway from photosynthetic eukaryotes

Sevan O. Majed

Biology Department, College of Education, Salahaddin University-Erbil, Kurdistan-Iraq



L-Galactono-1, 4-lactone dehydrogenase (L-GalLDH) is a key enzyme that catalyzes the last step in the L-ascorbate pathway in biosynthetic eukaryotes. It is widely distributed in the different lineages of photosynthetic eukaryotes. Here, we hypothesized that there is a close evolutionary relationship between L-GalLDHsequences of these eukaryotic lineages. To test this hypothesis, we collected all homologous L-GalLDHsequences of photosynthetic eukaryotes from the NCBI databases. This article reports two results. Firstly, phylogenetic L-GalLDHtree shows that different L-GalLDHs in different species have an evolutionary relationship with each other because these enzymes are descended from a common ancestral gene via gene duplication events at the earliest stage of evolution. The gene duplication events can lead to an emergence of multiple paralogous copy within the species called as In-paralogs and also in different species called as out-paralogs. Moreover, the speciation events can lead to the formation of different L-GalLDHproteins in different species. Because they share from a common ancestral gene, theyhave a close sequence similarity and functional similarity with each other. Secondly, biochemical experimental evidence reveals the presence and absence of the activity of the L-GalLDHenzyme in some lineages of photosynthetic eukaryotes; plants, chlorophyta, phaeophyceae, bryophyta, and pteridophyta. It is worth highlighting a fact that L-GalLDHprotein was only present in the species of a vascular plant (Pisumsativum), chlorophyta (Blindingia minima) and rhodophyta (Porphyra purpurea). This research study attempted to provide a further insight into the L-GalLDHenzymes have been functionally and structurally evolved over distinct lineages of the eukaryotes and over times.

Key Words:  Ascorbate, L-Galactono-1,4-lactone dehydrogenas, phylogenetic analysis, gene duplication events.


[1] Mapson, L. W. and Breslow, E. “Biological synthesis of ascorbic acid: L-galactono-1,4-lactone
dehydrogenase”, Biochemical Journal, Vol.68, pp. 395–406. (1958).

[2] Smirnoff, N., Conklin, P. L. and Loewus, F. A. “Biosynthesis of ascorbic acid in plants: A renaissance.
Annual Review of Plant Physiology and Plant Molecular Biology”, Biochemical Journal, Vol.52, pp.
437–467. (2001).

[3] Millar, A. H. Mittova, V. Kiddle, G. Heazlewood, J. L., Bartoli, C. G. Theodoulou, F. L. and Foyer, C. H.
“Control of ascorbate synthesis by respiration and its implications for stress responses”, Plant
Physiology, Vol.133, pp. 443–447,(2003).

[4] Ishikawa, T. and Shigeoka, S. “Recent advances in ascorbate biosynthesis and the physiological
significance of ascorbate peroxidase in photosynthesizing organisms”, Bioscience, Biotechnology, and
Biochemistry,Vol.72, pp. 1143–1154, (2008).

[5] Hancock, R. D. and Viola, R. “The use of micro-organisms for L-ascorbic acid production: Current
status and future perspectives”, Applied Microbiology and Biotechnology,Vol.56, pp. 567–576.(2001).

[6] Hancock, R. D. and Viola, R. “Biotechnological approaches for L-ascorbic acid production” Trends in
Biotechnology,Vol.20, pp. 299–305.(2002).

[7] Hancock, R. D., Walker, P. G., Pont, S. D. A., Marquis, N., Vivera, S., Gordon, S. L., Brennan, R. M.
and Viola, R. “L-Ascorbic acid accumulation in fruit of Ribesnigrum occurs by in situ biosynthesis via
the L-galactose pathway” Functional Plant Biology,Vol.34, pp. 1080–1091.(2007).

[8] Alhagdow, M., Mounet, F., Gilbert, L., Nunes-Nesi, A., Garcia, V., Just, D., Petit, J., Beauvoit, B.,
Fernie, A. R., Rothan, C. and Baldet, P. “Silencing of the mitochondrial ascorbate synthesizing enzyme
L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato”, Plant
Physiology,Vol.145, pp. 1408–1422.(2007).

[9] Pineau, B., Layoune, O., Danon, A. and de Paepe, R. “L-Galactono-1,4-lactone dehydrogenase is
required for the accumulation of plant respiratory complex I”. Journal of Biological Chemistry,Vol.283,
pp. 32500–32505.(2008).

[10] Shigeoka, S., Nakano, Y. and Kitaoka, S. “Biosynthetic pathway of L-ascorbic acid in Euglena gracilis
Z”, Journal of Nutritional Science and Vitaminology,Vol.25, pp. 299–307.(1979).

[11] Helsper, J. P., Kagan, L., Hilby, C. L., Maynard, T. M. and Loewus, F. A. “L-Ascorbic acid biosynthesis
in Ochromonasdanica”, Plant Physiology,Vol.69, pp. 465–468.(1982).

[12] Grun, M. and Loewus, F. A. “L-Ascorbic acid biosynthesis in the euryhaline diatom Cyclotellacryptica.
Planta”, Vol.160, pp. 6–11.(1984).

[13] Leferink, N. G. H., van den Berg, W. A. M. and van Berkel, W. J. H. “L-Galactono-gamma-lactone
dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis”, The
FEBS Journal, Vol.275, pp. 713–726.(2008).

[14] Ostergaard, J., Persiau, G., Davey, M. W., Bauw, G. and Van Montagu, M. “Isolation of a cDNA coding
for L-_-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants—
Purification, characterization, cDNA cloning, and expression in yeast”, Journal of Biological
Chemistry, Vol.272, pp. 30009–30016.(1997).

[15] Huh, W. K., Kim, S. T., Yang, K. S., Seok, Y. J., Hah, Y. C. and Kang, S. O. “Characterization of D-
arabinono-1,4-lactone oxidase from Candida-albicans Atcc-10231” European Journal of Biochemistry
Vol.225, pp. 1073–1079.(1994).

[16] Baroja-Mazo, A., del Valle, P., Rua, J., de Cima, S., Busto, F., de Arriaga, D. and Smirnoff, N.
“Characterisation and biosynthesis of D-erythroascorbic acid in Phycomycesblakesleeanus”, Fungal
Genetics and Biology,Vol.42, pp. 390–402.(2005).

[17] Amako, K., Fujita, K., Shimohata, T. A., Hasegawa, E., Kishimoto, R. and Goda, K. “NAD-specific D-
arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces
cerevisiae” FEBS Letters,Vol.580, pp. 6428–6434.(2006).

[18] Smirnoff N. “Ascorbic acid: metabolism and functions of a multi-facetted molecule”,European Journal
of Plant Biology,Vol.3, pp. 229-235.(2000).

[19] Jones, T. Taylor, R., and Thornton, M. “The rapid generation of mutation data matrices from protein
sequences”, Computer Applications in the Biosciences,Vol.8, pp. 275-282.(1992).

[20] Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. “MEGA6: Molecular Evolutionary
Genetics Analysis version 6.0.”,Molecular Biology and Evolution, Vol.30, pp. 2725-2729.(2013).

[21] Keeling, J. Burger, G.Durnford, G. Lang, F. Lee, W. Pearlman, E. Roger, J. and Gray, W.“The tree of
eukaryotes”, TRENDS Ecological EvolutionVol. 20, pp. 670-676.(2005).

[22] Bhattacharya, D. and Medlin, L.“The phylogeny of plastids: a review based on comparisons of small-
subunit ribosomal RNA coding regions”, Journal of Phycololgy, Vol.31, pp. 489-498.(1995).

[23] Rodriguez-Ezpeleta, N.Brinkmann, H. Burey, C.Roure, B. Burger, G. Loffelhardt, W. Bohnert, J.
Philippe, H. and Franz Lang, B.“Monophyly of primary photosynthetic eukaryotes: Green plants, Red
algae, and Glaucophytes”, Journal of Current Biology, Vol.15, pp. 1325-1330.(2005).

[24] Miller, G. Suzuki, N. Rizhsky, L. Hegie, A. Koussevitzky, S. and Mittler, R. “Double mutants deficient
in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive
oxygen species, plant development, and response to abiotic stresses”. Plant Physiology,Vol.144, pp.
1777–1785. (2007).

[25] Stiller, W. and Hall, D.“The origin of red algae: implication for plastid evolution”, Proceeding of the
National Academy Science,Vol.94, pp.4520-4525.(1997).

[26] Burger, G. Saint-Louis, D. Gray, W. and Franz Land, B.“Complete sequence of the mitochondrial DNA
of the red alga Porphyrapurpurea: cyanobacterial introns and shared ancestry of red and green algae”,
Journal of purnal of Plant Cell, Vol.11, pp. 1675-1694.(1999).

[27] Moreira, D. Le Guyader, H. and Philippe, H.“The origin or red algae and the evolution of
chloroplasts”, Journal of Nature Vol.405, pp. 69-72.(2000).

[28] Smirnoff, N. “L-Ascorbic acid biosynthesis. Vitamins and Hormones”,Vol.61, pp. 241–266.(2001).

[29] Smirnoff, N. and Gatzek, S. “Ascorbate biosynthesis: A diversity of pathways. In Vitamin C. Function
and Biochemistry in Animals and Plants”, Bioscience Scientific Publishers, Oxford, Vol.34, pp. 7–29. (2004).

[30] Loewus F., A., Jang R and Seegmiller C., G.“Conversion of C-14 labeled sugars to L-ascorbic acid in
ripening strawberries”Journal of Biological Chemistry, Vol.222, 649–664.(1956).

[31] Wheeler GL, Jones MA and Smirnoff N.“The biosynthetic pathway of vitamin C in higher
plants”,Journal of Nature,Vol.393, pp. 365-369.(1998).

[32] Bartoli, G., Pastori, M. and Foyer H.“Ascorbate biosynthesis in mitochondria is linked to the electron
transport chain between complexes III and IV”, Journal of Plant Physiology,Vol.123, pp. 335-343, (2000).

[33] Jime ́nez, A.Herna ́ndez, A. del Rı ́o A.and Sevilla, F.“Role of ascorbate-glutathione cycle of
mitochondria and peroxisomes in the senescence of pea leaves”,Journal of Plant PhysiologyVol.118, pp.

[34] Mannella, A.“Isolation of the outer membrane of plant mitochondria”, Methods Enzymology
Journal,Vol.148, pp. 453–464.(1987).