The Element ideal graph Γ(pα qβ ) (Z)

        
Fryad H. Abdul-Qadr

Department of Mathematics, College of Education, Salahaddin University – Hawler, Iraq

DOI: https://doi.org/10.17656/jzs.10547

Abstract

Let R be acommutative ring with identity and let x be an element of R. The Element Ideal Graph Γx (R) is a graph whose vertex set is the set of non-trivial ideals of R and two distinct ideal vertices I and J are adjacent if and only if x∈I J. In this paper we investigate the element ideal graph Γ(pα qβ ) (Z) to explore some of its properties with providing some examples, where Z is the set of integers, α, β∈Z+    and p and q are distinct prime numbers.

 Key Words:  Element Ideal Graph, Clique , Diameter. 



References

[1]Abdul-Qadr, F. H. "Annihilating and Element Ideal Graphs of Commutative Rings", Ph.D.-dissertation,College of Computer Sciences and Mathematics, University of Mosul, Iraq (2015).

[2]Akbari, S.; Maimani, H. R. and Yassemi, S. "When Zero Divisor Graph is Planner or A Complete r-Partite Graph", Journal of Algebra, Vol.270, No.1, pp169-180, (2003).

[3]Anderson, D. F. and Livingston, P. S. "The Zero Divisor Graph of A Commutative Ring", Journal of Algebra., Vol.217, No.1, pp 434-447, (1999).

[4]Beck, I. "Coloring of Commutative Ring”, Journal of Algebra, Vol.(1), No.116, pp. 208-22.(1988).

[5]Behboodi, M. and Rakeei, Z."The Annihilating-Ideal Graph of Commutative Rings I", Journal of Algebra 
Appl.,Vol.10, pp741-753, (2011).

[6] Behboodi, M. and Rakeei, Z. "The Annihilating-Ideal Graph of Commutative Rings II", J. Algebra Appl. 
Vol.10, pp727-739, (2011).

[7]David, S. and Richard, M. "Abstract Algebra" , Prentice-Hall Inc. U. S. A. (1991).

[8]Gary, C. and Linda, L."Graphs& Diagraphs", California, A divison of Wadsworth Inc, (1986).

[9]Levy, R. and Shapiro, J."The Zero Divisor Graph of Nonneam Regular Rings", Journal of Comm. 
Algebra, Vol.30, No.2, pp745-750,(2002).

[10] Sharma, P.; Sharma, A. and Vats, R. K.,"Analysisof Adjacency Matrix and Neighborhood Associated 
with Zero Divisor Graph of Finite Commutative Rings", International Journal of Computer Applications, Vol.14, No.3, pp38-41, (2011).