High throughput Phenotypic Microarray profiling of Mycobacterium abscessus

Sirwan Muhsin Muhammed Ameen1

1 Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq.

Original: 21 May 2018, Revised: 4 June 2018, Accepted: 11 June 2018, Published online: 20 June 2018


Mycobacterium abscessus group comprises of five species of rapidly growing mycobacteria. These mycobacteria are increasingly responsible for difficult-to treat, opportunistic cutaneous and respiratory tract infections, notably in cyctic fibrosis patients. Identification at the species level remains problematic and is relying on nucleotide sequence analyses, leaving a need for routine, phenotypic identification of such isolates. Here, the carbon and peptide nitrogen source utilization patterns of Mycobacterium abscessus complex  mycobacteria was investigated using Biolog phenotype MicroArray analysis based on tetrazolium dye reduction. In a first step, a data base was built after duplicate investigation of Mycobacterium abscessus, Mycobacterium bolletii, Mycobacterium massiliense, Mycobacterium chelonae and Mycobacterium franklinii type strains. In this study, 190 carbon sources were tested; 77 (40.5%), 77 (40.5%), 77 (40.5%), 76 (40%) and 37 (19.5%) were found to be utilized by type strains of M. abscessus, M. bollettii, M. massiliense, M. chelonae and M. franklinii. Of 285 peptide nitrogen sources, they were found able to utilize 217 (76 %), 216 (75.7 %), 209 (73. 3 %), 194 (68 %) and 24 (8.4 %) nitrogen substrates, respectively. Each species yielded one specific profile, thus allowing for their unambiguous phenotypic identification at the species level. In a second step, a collection of M. abscessus, M. bolletii, M. massiliense and M. chelonae was tested to assess the usefulness of the Biolog for identification. We observed that all then identical strains were correctly identified at the species level.

Key Words: Phenotypic Microarray, rapidly growing mycobacteria


[1] Sassi, M. Ben Kahla, I. Drancourt, M . "Mycobacterium abscessus multispacer sequence typing". BMC Microbiol. Vol.13, pp.3. (2013).

[2] Furuya, E.Y. Paez, A. Srinivasan, A. Cooksey, R. Augenbraun, M. et al. "Outbreak of Mycobacterium abscessus wound infections among "lipotourists" from the United States who underwent abdominoplasty in the Dominican Republic". Clin Infect Dis. Vol .46, pp.1181-1188. (2008).

[3] Kusunoki, S. Ezaki,T. "Proposal of Mycobacterium peregrinum sp. nov., nom.rev. and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status:Mycobacterium abscessus comb. nov". Int J Syst Bacteriol. Vol. 42, pp. 240-245. (1992).

[4] Simmon, K.E., Brown-Elliott, B.A., Ridge, P.G. Durtschi, J.D. Mann, L.B.et al. "Mycobacterium chelonae-abscessus complex associated with sinopulmonary disease, Northeastern USA". Emerg Infect Dis. Vol. 17, pp.1692-1700. (2011).

[5] Adekambi, T.Berger, P. Raoult, D. Drancourt, M. "rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. Nov". Int J Syst Evol Microbiol . Vol. 56, pp.133-143. (2006).

[6] Adékambi, T. Reynaud-Gaubert, M. Greub, G. Gevaudan, M.J. La Scola B, et al. "Amoebal coculture of "Mycobacterium massiliense" sp. nov. from the sputum of a patient with hemoptoic pneumonia". J Clin Microbiol. Vol .42, 5493-5501. (2004).

[7] Macheras, E. Roux AL, Bastian, S. Leão, S.C. Palaci, M. et al. "Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains". J Clin Microbiol. Vol .49, 491-499. (2011).

[8] Bochner, B. R. "Global phenotypic characterization of bacteria". FEMS Microbiol Rev. Vol. 33,191- 205. (2009).

[9] Bochner, B. R. "New technologies to assess genotype-phenotype relationships". Nat Rev Genet. Vol. 4, pp. 309-314. (2003).

[10] Khatri, B. Fielder, M. Jones, G. Newell, W. Abu-Oun, M. et al. "High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains’ Metabolism Using Biolog Phenotype Microarrays". PLoS One. Vol. 8, pp.e52673. (2013).

[11] El Khéchine, A. Couderc, C. Flaudrops, C. Raoult, D. Drancourt, M. "Matrix-assisted laser desorption/i,onization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice". PLoS One. Vol. 6, pp. e24720. (2011).

[12] Bochner, B. R. Gadzinski, P. and Panomitros, E. "Phenotype microarrays for high-throughput phenotypic testing and assay of gene function". Genome Res. Vol. 11, pp.1246-1255. (2001).

[13] Brittle, W. Marais, B.J. Hesseling, A.C. Schaaf, H.S. Kidd, M, et al. "Improvement in mycobacterial yield and reduced time to detection in pediatric samples by use of a nutrient broth growth supplement". J Clin Microbiol. Vol. 47, pp.1287-1289. (2009).

[14] Pawlik, A. Garnier, G. Orgeur, M. Tong, P. Lohan, A. et al. "Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus". Mol Microbiol. Vol. 90, pp.612-29. (2013).

[15] Hayashi, D. Takii, T. Mukai, T. Makino, M. Yasuda, E. et al. "Biochemical characteristics among Mycobacterium bovis BCG substrains". FEMS Microbiol Lett. Vol. 306, pp.103-109. (2010).

[16] Chen, J.W. Scaria, J. Chang, Y.F. "Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress". PLoS One. Vol. 7, pp. e37884. (2012).

[17] Wang, C. Mahrous, E.A. Lee, R.E.Vestling, M.M. Takayama, K. "Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80". J Lipids: 676535. (2011).

[18] Leao, S.C. Tortoli, E. Euzéby, J.P. Garcia, M.J. "Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus". Int J Syst Evol Microbiol. Vol. 61, pp.2311–2313. (2011).

[19] Rahman, M. Jaques, III S. Daniels, L. "Carbon source utilization pattern among rapidly growing Mycobacterium (RGM) species by Phenotypic Array analysis using Biolog OmniLog System". SC-ASM Conference, Austin. (2008).