Iron-copper mineralization associated with metagabbro in Mirawa Village, Kurdistan region, northeastern Iraq

Irfan Omar Mousa Yara 1& Yousif Osman Mohammad1

1 Department of Geology, College of Science, University of Sulaimani, Kurdistan Region, Iraq

Original: 22 Feburary 2018, Revised: 12 May 2018, Accepted: 11 June 2018, Published online: 20 June 2018


Mirawa iron-copper mineralization in Mirawa village, Kurdistan region, occurs as a zone of 15 m thick within the metagabbro of the Mawat Ophiolite. It is hosted by brecciated
amphibolite facies gabbroic rocks with a northwest–southeast trending shear zone. Amphibole, magnetite, plagioclase, quartz, epidote, chlorite, clinopyroxene and chalcopyrite
represent the mineral constitutes of metagabbro. Metamorphic conditions have been estimated from the green metamorphic amphibole replacing primary magmatic clinopyroxene (M1, 500 < T < 560 °C; 4.3 < P < 5.2 kbar) and retrograde actinolite (white amphibole) replacing the green amphibole due to continuous decreasing pressure and temperature (M2, 415 < T < 480 °C; 1.9 < P < 2.3 kbar). Occurrence of quartz with ironcopper mineralization hydrothermal fluids played a significant role during metamorphism. Chlorite and epidote were formed at the late stage of metamorphism. Iron-copper mineralization occurred in two paragenetic stages. Coarse grains of magnetite, chalcopyrite and pyrite formed during the first stage of mineralization representing syngenetic mineralization. Magnetite is the main Fe-ore mineral and it is characterized by large euhedral to subhedral grains with ilmenite exsolution lamellae. The second stage is epigenetic where mineralization is characterized by the formation of secondary minerals, replacing the primary minerals. Hematite replaces primary magnetite along the rim. Chalcopyrite, pyrite and magnetite were replaced by goethite whereas covellite overgrows chalcopyrite forming a corona texture. Fine-grained idomorphic aggregates of magnetite are dominant in the second stage and seem to be formed from iron liberated from pyroxene and other iron-bearing minerals. Microstructural orientation of the coarse-grained magnetite indicates a NW-SE direction for the maximum stretching of strain ellipse.

Key Words: Iron-copper, Mineralization, Metagabbro, Geothermometry


[1] Alavi, M. “Tectonics of the Zagros orogenic belt of Iran: new data and interpretations”, Tectonophysics Vol. 229, pp. 211–38. (1994).

[2] Berberian, M., and King, G. C. P. “Towards a paleogeography and tectonic evolution of Iran”, Canadian Journal of Earth Sciences, Vol. 18, pp.210–65. (1981).

[3] Mohajjel, M., and Fergusson, C.L. “Dextral transpression in Late Cretaceous continental collision zone, western Iran”, Journal of Structural geology Vol. 22, pp.1125–1139. (2000).

[4] Mohajjel, M., Fergusson, C.L., and Sahandi, M.R. “Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran”, Journal of Asian Earth Science Vol. 21, pp. 397–412. (2003).

[5] Agard, P., Omrani J, Jolivet L., Mouthereau, F. “Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation”, International Journal of Earth Sciences Vol. 94, pp.401–419. (2005).

[6] Stöcklin, J. “Structural history and tectonics of Iran: a review”, AAPG Bull, Vol.52, pp.1229 –1258. (1968).

[7] Jassim, S. Z., and Goff, J. C. “Geology of Iraq” Parague and Moravian Museum Brno. pp. 341. (2006).

[8] Fouad, S.F. “Tectonic Map of Iraq, Scale 1:1,000,000, 3rded” ,GEOSURV: Baghdad, Iraq, (2010).

[9] Williams, W. R. “Mineral survey of mountains of north Iraq”, GEOSURV, int, rep. No. 133. (1948).

[10]Smirnov, V. A., and Nelidov, V. “Report on 1:200000 prospecting correlation of Sulaimaniya, Chwarta, Penjwin area, Carried out in (1962)”. GEOSURV, int. rep. No. 290, (1962).

[11] Al-Hashimi, A. R., Al-Mehaidi, H. M. “Cu-Ni-Cr dispersion in Mawat ophiolite complex, NE Iraq”, Journal of Geology Society Iraq, special issue, pp. 37–44. (1975).

[12] Mohammad, Y.O., Cornell, D.H., Qaradaghi, J.H., and Mohammad, F.O. “Geochemistry and Ar–Ar muscovite ages of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: implications for Arabia–Eurasia continental collision” Journal of Asian Earth Science Vol. 86, pp. 151–165. (2014).

[13] Vanecek, M. “The principal metallogenic features of Iraq” Acta Universitatis Carolinne-Geologica Vol. 3, pp.237–252. (1972).

[14] Ricou, L. E. Le “Croissant Ophiolitique Peri-Arab: Une ceinture de nappes mises en place an cretace superieur”, Rev. Geogr. Phys. Geol. Dyn., Vol (13) pp 327–349, (1971).

[15] Al-Mehaidi, H. M. “Tertiary nappes in Mawat range, NE Iraq”,Journal of Geology Society Iraq, Vol. 7, pp. 31–44. (1975).

[16] Buday, T. “The regional geology of Iraq”, in Stratigraphy and Paleogeography edt. by Kassab, I. M. and Jassim, S. Z., Dar Al-Kutib publishing house, Mosul, Iraq, Vol: I, pp. 445. (1980).

[17] Buday, T., and Jassim, S. Z “The Regional Geology of Iraq”, Tectonism, Magmatism, and Metamorphism. Geological Survey and Mineral Investigation of Baghdad, Vol 2, pp. 352. (1987).

[18]Zakaria, M. B. M. “Petrology and geochemistry of the southern part of Mawat ophiolite complex, northeastern Iraq”, Unpubl. M. Sc. Thesis, University of Mosul. (1992).

[19]Aswad, K. J., and Elias, E. M. “Petrogenesis, geochemistry and metamorphism of spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE Iraq”, Ofiolitti, Vol .13, pp. 95-109. (1988).

[20]Ismail, S. A., Mirza, T. M., and Carr, P.F. “Platinum-group elements geochemistry in podiform chromitites and associated peridotites of the Mawatophiolite, northeastern Iraq", Journal of Asian Earth Sciences, Vol. 37, pp. 31–41, (2010).

[21] Ali, S.A., Buckman, S., Aswad, K.J., Jones, B.G., Ismail, S.A. and Nutman, A.P. “The tectonic evolution of a Neo-Tethyan (Eocene–Oligocene) island-arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone”, Island Arc Vol. 22, pp.104–125, (2013).

[22]Azizi, H, Hadi, A., Asahara, Y., and Mohammed, Y.O. “Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq”, Central European Journal of Geosciences Vol. 5, pp.523–537. (2013).

[23] Hama-Aziz, N. R. “Petrogenesis, evolution, and tectonics of the serpentinites of the Zagros suture zone, Kurdistan Region, NE Iraq”,Unpublished PhD Thesis, Sulaimani University, Sulaimani, Kurdistan Region, Iraq, pp. 250. (2008).

[24] Zenk, M., Schulz, B. “Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland”, Mineralogical Magazine Vol. 68, pp. 769-786. (2004).

[25] Al-Hassan, M. E. “Geochemistry and tectonic environment of dolenite rocks, Penjwin ophioliote complex, North east of Iraq”, Iraqi Geological Journal. Vol. 29, No.1, pp. 50-63. (1996).

[26] Radar, P. “The Ore Minerals and their intergrowths”. International series in earth sciences. Edited by Ingreson, D. E., Pergamon Press. Oxford. 2nd ed. Vol. 1 and 2, pp.1205. (1980).

[27] Craig, J. R., and Vaughan, D. J. “Ore Microscopy and Ore Petrography”, John Wiley and Sons, New York, pp. 406. (1981).

[28] Awadh, S. M. “Mineralogy, geochemistry and origin of the Lead-Zinc-Barite deposits from selective areas from. North of Zakho, Northern Iraq” Unpubl, Ph. D. Thesis, Baghdad University (2006).

[29] Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, F. C., Kisch, H. J., Krichovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J.C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., Youzhi, G. “Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, American Mineralogist, Vol. 82, pp.1019-1037. (1997).

[30] Rebay, G., and Messiga, B. “Prograde metamorphic evolution and development of chloritoid-bearing eclogitic assemblages in subcontinental metagabbro (Sesia–Lanzo zone, Italy), Lithos, Vol.98, pp. 275- 291. (2007).

[31] Bégin, N. J., and Carmichael, D. M. “Textural and compositional relationships of Ca-amphiboles in metabasites of the Cape Smith Belt, Northern Québec: Implications for a miscibility gap at medium pressure”, Journal of Petrology, Vol. 33, pp. 1317–1343. (1992).

[32] Triboulet, C. “The (Na–Ca) amphibole–albite–chlorite–epidote–quartz geothermobarometer in the system S–A–F–M–C–N–H2O. An empirical calibration” Journal of Metamorphic Geology, Vol. 10, pp. 545–556. (1992).

[33] Schulz, B., Triboulet, C., Audren, C., Pfeifer, H. R., and Gilg, A. “Two-stage prograde and retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists from Ile de Groix (Brittany, France)”, International Journal of Earth Sciences, Vol. 90, pp. 871–889. (2001).

[34] Horváth, P., and Árkai, P. “Amphibole-bearing assemblages as indicators of microdomain-scale equilibrium conditions in metabasites: an example from Alpine ophiolites of the Meliata Unit, NE Hungary , Mineralogy and Petrology, Vol.84, pp.233–258. (2005).

[35] Plyusnina, L. P.” Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages”, Contribution to Mineralogy and Petrology, Vol.80, pp. 140–146, (1982).

[36] Blundy, J. D., and Holland, T. J. B. “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer”, Contribution to Mineralogy and Petrology, Vol.104, pp. 208–224. (1990).

[37] Holland, T. J. B., and Blundy, J. D. “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry”, Contributions to Mineralogy and Petrology, Vol.116, pp. 433– 447. (1994).

[38] Bachman, O., and Dungan, M. A. “Temperature induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado”, American Mineralogist, Vol.87, pp. 1062–1076. (2002).

[39] Schulz, B., Triboulet, C., and Audren, C. “Microstructures and mineral chemistry in amphibolites from the western Tauern Window (Eastern Alps), and P-T-deformation paths of the Alpine greenschistamphibolite facies metamorphism”, Mineralogical Magazine, Vol. 59, pp. 641–659. (1995).

[40] Vogl, J. J. “Thermal-baric structure and P–T history of the Brooks Range metamorphic core, Alaska”, Journal of Metamorphic Geology, Vol. 21, pp. 269–284. (2003).

[41] Cruz, M. D. R. “Zoned Ca-amphibole as a new marker of the Alpine metamorphic evolution of phyllites from the Jubrique unit, Alpujárride Complex, Betic Cordillera, Spain”, Mineralogical Magazine, Vol. 74, pp.773–796. (2010).

[42] Passchier, C., Trouw, R. A. J. “Microtectonics.”, 2nded. Springer, Berlin Heidelberg, pp. 366, (2005).