Issues‎ > ‎Vol 20n3-4‎ > ‎


Angular Distribution of Delta Electrons in SAGE Spectrometer using Geant4

 F. A. Ali1, H. J. Hassan1

1Physics Department, College of Education, University of Sulaimani, Kurdistan Region, Iraq

Original: 9 April 2017, Revised: 22 July 2018, Accepted: 12 September 2018, Published online: 20 December 2018

DOI Link:


This simulation work is intended to describe the angular distribution of (δ) electrons in a spectrometer that is designed for simultaneously measuring gamma-rays and electrons called SAGE Spectrometer using the Geant4 simulation toolkit. The angular distributions were identified for various target materials including lead, gadolinium, tin, aluminium and carbon. In heavy ion atom collision, the direct ionization of the target elements and the scattering of electron due to the Two-Centre Coulomb forces are the dominant contributions. The direction of (δ) electrons produced in a heavy ion collision hitting a heavy element target is strongly focused in the forward and backward directions with a large suppression at perpendicular angles. For light element targets the (δ)  electrons are almost entirely forward focused. This indicates that the distributions are (Z) dependent. The main features of the (δ)  electrons coming from SAGE spectrometer are characterized by looking at their angular distributions produced from a reaction between a Ca48 ion beam and a lead target.

Key Words: SAGE Spectrometer, delta electron Angular distribution



[1] Papadakis, P., Cox, D. M., Konki, J., Butler, P. A., Greenlees, P. T., Hauschild, K., &Sorri, J. "A GEANT4 simulation package for the SAGE spectrometer". In Journal of Physics: Conference Series            (Vol. 381, No. 1, p. 012051). IOP Publishing. (2012).            

[2] Klank, B. & R. A. Ristinen  "Proc. Int. Conf. on Radioactivity in Nuclear Spectroscopy". Ed. J. H.                                                                                                                                                       Hamilton and J. C. Manthuruthil. (1969).
[3] Papadakis, P. "Combining in-beam gamma-ray and conversion electron spectroscopy: the SAGE                                                                                                                                                                                                                                             spectrometer" (Doctoral dissertation, University of Liverpool). (2010).
[4] Geant4 Collaboration. "Introduction to Geant4". (2010).

[5] Kadri, O., Ivanchenko, V. N., Gharbi, F., &Trabelsi, A. "GEANT4 simulation of electron energy        deposition in extended media". Nuclear Instruments and Methods in Physics Research Section B: Beam          Interactions with Materials and Atoms, Vol. 258, No. 2, pp. 381-387. (2007).

[6] Schmidt-Böcking, H., Ramm, U., Kraft, G., Ullrich, J., Berg, H., Kelbch, C., &Jiazhen, F. "-Electron emission in fast heavy ion atom collisions. Advances in space research, Vol. 12, No. 2, pp. 7-15. (1992).

[7] Serway, A. R., & Jewett, J. W. "Physics for Scientist and Engineering". (2004).

[8] Young, H. D. & R. A. Freedman. "University Physics with Modern Physics", Tenth Edition                                                                                                                                                                                                      Addison Wesley Longman, Inc. (2000).

[9] Olson, R. E., J. Ullrich, & H. Schmidt-Böcking. "Multiple-Ionization Collision Dynamics". Phys. Rev. a        Vol. 39, No. 11, pp. 5572-5583. (1989).

[10] Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., &Behner, F. "GEANT4 a simulation toolkit". Nuclear instruments and methods in physics research section A:                       Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, No. 3, pp. 250-303. (2003).