Self-regulating naturally occurring microcapsules for controlled release of Levodopa

Shwan Abdullah Hamad1

1 Department of Chemistry, College of Science, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq


Original3 October 2018Revised: 5 September 2019 Accepted11 September 2019Published online20 December 2019


Abstract

Levodopa remains the gold standard treatment for patients suffering with Parkinson’s disease. Patients can become sensitive to fluctuations in plasma concentration of the drug, resulting in devastating side effects. This present paper reports the encapsulation of LV into sporopollenin exine microcapsules prepared in-house from Lycopodium Clavatum plant. The loaded sporopollenin exine microcapsules were prepared by removing the cellulosic intine, and then filling the internal cavity surrounded by the sporopollenin exine with a concentrated solution of LV. The trapped drug was then precipitated inside the microcapsules using pH change, followed by a thorough washing. The released amount of the drug in aqueous media resembling physiological conditions of human blood plasma was then quantified using UV-Vis spectrophotometer. The results showed that LV can be successfully encapsulated within the sporopollenin exine microcapsules, and a sustained release of the drug can be achieved. This paper also shows that the microcapsules loaded with the drug can act as a self-regulating device to release the drug in aqueous medium over a longer period.


Key WordsParkinson’s disease, Levodopa (LV), Microcapsules, Sporopollenin, Encapsulation, Controlled Release, self-regulating microcapsules.     

References


[1]Khor, S. P.; Hsu, A." The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson's disease ", Current Clinical Pharmacology, Vol. 2, pp. 234.(2007).

[2] Silver, D. E.; Ruggieri, S. "Initiating therapy for Parkinson's disease", Neurology, Vol 50, S.18. (1998)

[3] McDowell, F. H.; Lee, J. E. "L-DOPA in Parkinson's Disease", California Medicine, Vol.113, pp. 44. (1970).

[4] Nutt, J. G.; Fellman, J. H."Pharmacokinetics of Levodopa", Clinical Neuropharmacology,  Vol. 7, pp. 35. (1984).

[5] Goole, J.; Amighi, K. " Levodopa delivery systems for the treatment of Parkinson's disease: an overview ", International Journal of Pharmacy, Vol. 380, pp. 1. (2009).

[6] Chao, O. Y.; Mattern, C.; De Souza Silva, A. M.; Weßler, J.; Ruocco, L. A.; Nikolaus, S.; Huston, J. P. Pum, M. E. "Intranasally applied L-DOPA alleviates parkinsonian symptoms in rats with unilateral nigro-striatal 6-OHDA lesions ", Brain Research Bulletin, Vol. 87, pp. 340. (2012).

[7] Arıca, B.; Kaş, H. S.; Moghdam, A.; Akalan, N.; Hıncal, A. A. "Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats ", Journal of Controlled Release, Vol. 102, pp. 689. (2005).

[8] D'Aurizio, E.; Van Nostrum, C. F.; Van Steenbergen, M. J.; Sozio, P.; Siepmann, F.; Siepmann, J.; Hennink, W. E.; Di Stefano, A. "Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery ",International Journal of Pharmacy, Vol. 409, pp. 289. (2011).

[9] Wittborn, J.; Rao, K. V.; El-Ghazaly, G.; Rowley, "Nanoscale similarities in the substructure of the exines of Fagus pollen grains and Lycopodium spores ", Annals of Botany, Vol. 82, pp. 141. (1998).

[10] Uehara, K.; Kurita, S. "Ultrastructural study on spore wall morphogenesis in lycopodium clavatum (lycopodiaceae)", American Journal of Botany, Vol. 78, pp. 24. (1991).

[11] Blackmore, S.; Wortley, A. H.; Skvarla, J. J.; Rowley, "Pollen wall development in flowering plants", New Phytologist, Vol. 174, pp. 483. (2007).

[12] Shaw, G. "Pollen: Development and Physiology", Butherworths, London, (1971).

[13] Meutergerhards, A.; Schwerdtfeger, C.; Steuernagel, S.; Wilmesmeier, S.; Wiermann, R. "Studies on Sporopollenin Structure during Pollen Development ", Zeitschrift Fur Naturforschung C: A Journal of Biosciences, Vol. 50, pp. 487. (1995).

[14] Binks, B. P.; Clint, J. H.; Mackenzie, G.; Simcock, C.; Whitby, C. P. "Naturally occurring spore particles at planar fluid interfaces and in emulsions ", Langmuir, Vol. 21, pp. 8161. (2005).

[15] Domínguez, E.; Mercado, J. A.; Quesada, M. A.; Heredia, A. " Fabrication and Characterisation of Novel Natural Lycopodium clavatum Sporopollenin Microcapsules Loaded In-Situ with Nano-Magnetic Humic Acid-Metal Complexes ", Sexual Plant Reproduction, Vol. 12, pp. 171. (1999).

[16] Paunov, V. N.; Mackenzie, G.; Stoyanov, S. D. "Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components ", Journal of Materials Chemistry, Vol. 17, pp. 609. (2007).

[17] Hamad, S. A.; Dyab, A. F. K.; Stoyanov, S. D.; Paunov, V. N. "Encapsulation of living cells into sporopollenin microcapsules ", Journal of Materials Chemistry, Vol. 21, pp. 18018. (2011).

[18] Lorch, M.; Thomasson, M. J.; Diego-Taboada, A.; Barrier, S.; Atkin, S. L.; Mackenzie, G.; Archibald, S. J. "MRI contrast agent delivery using spore capsules: controlled release in blood plasma", Chemical Communications, pp. 6442-6444. (2009).

[19]  Barrier, B.; Rigby, A. S.; Diego-Taboada, A.; Thomasson, M. J.; Mackenzie, G.; Atkin, S. L.; "Sporopollenin exines: A novel natural taste masking material", LWT - Food Science and Technology, Vol. 43, pp. 73-76. (2010)

[20]  Diego-Taboada, A.; Maillet, L.; Banoub, J. H.;Lorch, M.;  Rigby, A. S.; Boa, A. N.; Atkin, S. L.; and Mackenzie, G. "Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking", Journal of Materials Chemistry B, Vol. 1, pp. 707-713. (2013).

[21] Akyuz, L., Sargin, I., Kaya, M., Ceter, T., Akata, I., "A new pollen-derived microcarrier for pantoprazole delivery", Materials Science and Engineering: C, Vol. 71, pp. 937-942. (2017).

[22]  Sargin, I., Akyuz, L., Kaya, M., Tan, G., Ceter, T., Yildirim, K., Ertosun, S., Aydin, G., H., Topal, M., "Controlled release and anti-proliferative effect of imatinib mesylate loaded sporopollenin microcapsules extracted from pollens of Betula pendula", International Journal of Macromolecules, Vol.105, pp. 749-756. (2017).

[23] Mujtaba, M., Sargin, I., Akyuz, L., Ceter, T., Kaya, M., "Newly isolated sporopollenin microcages from Platanus orientalis pollens as a vehicle for controlled drug delivery", Materials Science and Engineering: C, Vol. 77, pp. 263-270. (2017).