Issues‎ > ‎vol22n1‎ > ‎

jzs-10796

Sterane biomarker analysis of Sargelu Formation, Miran West Field, MW-2 well, Kurdistan Region, NE Iraq: Implications for origin of organic matter, palaeoenvironment and maturity

 

Danyar A. Salih1, Sardar S. Fatah1, Fraidoon Rashid2, Mohammed H. Hakimi3,4 and Ibrahim M.J. Mohialdeen1

 

1 Department of Geology, College of Science, University of Sulaimani, Sulaimani, Kurdistan Region- Iraq

2 Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimani, Kurdistan Region- Iraq

3 Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia

4 Geology Department, Faculty of Applied Science, Taiz University, 6803 Taiz, Yemen


Original: 3 November 2019       Revised: 20 February 2020     Accepted:April 2020        Published online: 20 June 2020  


Doi Linkhttps://doi.org/10.17656/jzs.10796


Abstract

Sargelu Formation (Middle Jurassic) is well known to be one of the most important and wide distributed source rocks in the Middle East. In this study, nineteen cuttings samples from Sargelu Formation were studied from one subsurface section within Miran West Field (well MW-2) in Zagros Folded Belt, Kurdistan region of Iraq. The Formation was penetrated from the interval 2375m to 2475m, which is mainly composed of argillaceous limestone and shale. The Total Organic Carbon (TOC wt %) for all samples were calculated from the sonic and resistivity logs using Passey et al., method for TOC estimation from wireline logs. The range of TOC percentage in the selected interval is between 0.654 and 6.53%. In addition, all samples have been analyzed by Gas Chromatography/ Mass Spectrometry (GC/MS) in order to identify and study the biomarkers distribution in the selected rocks. The short chain n-alkanes between C15-C18, with isoprenoids pristane (Pr) and phytane (Ph) are dominants in the Sargelu formation. The average of Pr/Ph ratio in the samples was 0.95. Furthermore, most of the studied samples show unimodal envelope chromatograms, maximum peak carbon n-C15- n-C20, and low CPI values (0.89-1.17). The calculated odd over even predominance (OEP) for the studied samples show near value 1.0 (av. 0.94). The TOC values reflecting well preservation and high productivity of organic matter in reducing/anoxic depositional environment. Moreover, ratios of Pr/Ph indicating to anoxic and commonly marine carbonate environments; and also unimodal envelope of n-C15- n-C20 shows a predominance of marine input, and the organisms derived from phytoplankton, zooplankton and benthic bacteria with minor photosynthetic and terrestrial plants. The studied samples have C29 20S/(20S+20R) and ββ/ (ββ+αα) isomerization values ranging from 0.39 - 0.58 and 0.48 - 0.65 respectively, indicating high mature source rocks of Sargelu Formation in this well. In most studied samples, the C27 and C29 steranes predominate over the C28 steranes, reflecting a high contribution of aquatic planktonic-bacterial organic matter with a minor terrigenous organic matter input.


Key Words: Sargelu Formation, Jurassic, Kurdistan, Biomarkers, Miran West Field, Hydrocarbons



 References

[1] Abdula, R.A. "Hydrocarbon potential of Sargelu Formation and oil-source correlation, Iraqi Kurdistan". Arabian Journal of Geosciences. Vol. 8, No. 8, pp.5845-5868. (2015).

[2] Abdula, R. "Petroleum source rock analysis of the Jurassic Sargelu Formation, northern Iraq (Doctoral dissertation". Colorado School of Mines. (2010).

[3] Abdullah, F.H.A. "A preliminary evaluation of Jurassic source rock potential in Kuwait". Journal of Petroleum Geology. Vol. 24, No. 3, pp.361-378. (2001).

[4] Adegoke, A.K., Abdullah, W.H., Hakimi, M.H. and Yandoka, B.M.S. "Geochemical characterisation of Fika Formation in the Chad (Bornu) Basin, northeastern Nigeria: implications for depositional environment and tectonic setting". Applied Geochemistry. Vol. 43, pp.1-12. (2014).

[5] Al-Ameri, T.K. and Zumberge, J. "Middle and upper jurassic hydrocarbon potential of the zagross fold Belt, North Iraq". Marine and Petroleum Geology. Vol. 36, No. 1, pp.13-34. (2012).

[6] Al-Ameri, T.K., Najaf, A., Zumberge, J. and Brown, S. "Petroleum potential and oil correlation of the Middle Jurassic Sargelu Formation, Iraq". In AAPG conference, Houston, Texas (Poster). (2006).

[7] Al-Ameri, T.K., Najaf, A.A., Al-Khafaji, A.S., Zumberge, J. and Pitman, J. "Hydrocarbon potential of the Sargelu formation, North Iraq". Arabian Journal of Geosciences. Vol. 7, No. 3, pp.987-1000. (2014).

[8] Al-Husseini MI. "Jurassic sequence stratigraphy of the western and southern Arabian gulf". GeoArabia. Vol. 2, pp. 361–382. (1997).

[9] Aqrawi, A.A., Goff, J.C., Horbury, A.D. and Sadooni, F.N. "The petroleum geology of Iraq". Scientific Press. (2010).

[10] Bechtel, A., Widera, M., Sachsenhofer, R.F., Gratzer, R., Lücke, A. and Woszczyk, M. "Biomarker and stable carbon isotope systematics of fossil wood from the second Lusatian lignite seam of the Lubstów deposit (Poland)". Organic Geochemistry. Vol. 38, No. 11, pp.1850-1864. (2007).

[11] Bellen, R.V., Dunnington, H.V., Wetzel, R. and Morton, D. "Lexique stratigraphique international". Asie, Iraq, Vol. 3(10a). (1959).

[12] Brassell, S.C., Eglinton, G., Maxwell, J.R. and Philp, R.P. "Natural background of alkanes in the aquatic environment". In Aquatic pollutants (pp. 69-86). Pergamon. (1978).

[13]Buday, T. "The regional geology of Iraq, vol. 1, Stratigraphy and Paleogeography". GEOSURV, Baghdad, Iraq, 445pp. (1980).

[14]Collister, J., Ehrlich, R., Mango, F. and Johnson, G. "Modification of the petroleum system concept: Origins of alkanes and isoprenoids in crude oils". AAPG bulletin. Vol. 88, No. 5, pp.587-611. (2004).

[15] Cranwell, P.A. "Organic geochemistry of Cam Loch (Sutherland) sediments". Chemical Geology. Vol. 20, pp.205-221. (1977).

[16] Dahl, J., Moldowan, J.M. and Sundararaman, P. "Relationship of biomarker distribution to depositional environment: Phosphoria Formation, Montana". USA. Organic Geochemistry. Vol. 20, No. 7, pp.1001-1017. (1993).

[17] Darvishzadeh, A. "Geology of Iran: Tehran". Amirkabir, Publication Company. p. 625. (1992).

[18] Didyk, B.M., Simoneit, B.R.T., Brassell, S.T. and Eglinton, G. "Organic geochemical indicators of palaeoenvironmental conditions of sedimentation". Nature. Vol. 272 (5650), p.216. (1978).

[19] Difan, H., Jinchao, L., Dajiang, Z., Xiaoming, H. and Zhuhong, Z. "Maturation sequence of Tertiary crude oils in the Qaidam Basin and its significance in petroleum resource assessment". Journal of Southeast Asian Earth Sciences. Vol. 5, No. (1-4), pp.359-366. (1991).

[20] Dutta, S., Bhattacharya, S. and Raju, S.V. "Biomarker signatures from Neoproterozoic–early Cambrian oil, western India". Organic geochemistry. Vol. 56, pp.68-80. (2013).

[21] El Diasty, W.S., Abo Ghonaim, A.A., Mostafa, A.R., El Beialy, S.Y. and Edwards, K.J. "Biomarker characteristics of the Turonian–Eocene succession, Belayim oilfields, central Gulf of Suez, Egypt". Journal of the Association of Arab Universities for Basic and Applied Sciences. Vol. 19, No. 1, pp.91-100. (2016).

[22] El Nady, M.M. "Biomarkers assessment of crude oils and extracts from Jurassic-Cretaceous rocks, North Qattara Depression, North Western Desert, Egypt". Petroleum Science and Technology, Vol. 26, No. 9, pp.1063-1082. (2008).

[23] a- El-Sabagh, S.M., El-Naggar, A.Y., El Nady, M.M., Badr, I.A., Ebiad, M.A. and Abdullah, E.S. "Fingerprinting of biomarker characteristics of some Egyptian crude oils in Northern Western Desert as evidence for organic matter input and maturity level assessment". Egyptian Journal of Petroleum. Vol. 27, No. 2, pp.201-208. (2018).

[24]b- El-Sabagh, S.M., El-Naggar, A.Y., El Nady, M.M., Ebiad, M.A., Rashad, A.M. and Abdullah, E.S. "Distribution of triterpanes and steranes biomarkers as indication of organic matters input and depositional environments of crude oils of oilfields in Gulf of Suez, Egypt". Egyptian journal of petroleum. Vol. 27, No. 4, pp.969-977. (2018).

[25] Faqi, A., Ali, A., Abdullah, B. and Bowden, S. "Source Rock Evaluation and Lateral Changes in Thermal Maturity of the Sargelu Formation (Middle Jurassic) in Kurdistan Region-Northern Iraq". UKH Journal of Science and Engineering. Vol. 2, No. 1, pp.7-17. (2018).

[26] Fatah, S.S. and Mohialdeen, I.M. "Hydrocarbon generation potential and thermal maturity of Middle Jurassic Sargelu Formation in Miran Field, Sulaimani Area, Kurdistan Region, NE Iraq". J Zankoy Sulaimani Spec. Issue GeoKurdistan II, pp.213-228. (2016).

[27] Fertl, W.H.  and Rieke H.H . "Gamma ray spectral evaluation techniques identify fractured shale reservoirs and source-rock characteristics". J. Petrol. Technol. Vol. 32, No. 11, pp. 2053-2062. (1980).

[28] Hakimi, M.H. and Abdullah, W.H. "Geochemical characteristics of some crude oils from Alif Field in the Marib-Shabowah Basin, and source-related types". Marine and Petroleum Geology. Vol. 45, pp.304-314. (2013).

[29] Hakimi, M.H. and Najaf, A.A. "Origin of crude oils from oilfields in the Zagros Fold Belt, southern Iraq: Relation to organic matter input and paleo environmental conditions". Marine and Petroleum Geology, Vol. 78, pp.547-561. (2016).

[30] Hakimi, M.H., Najaf, A.A., Abdula, R.A. and Mohialdeen, I.M. "Generation and expulsion history of oil-source rock (Middle Jurassic Sargelu Formation) in the Kurdistan of north Iraq, Zagros folded belt: Implications from 1D basin modeling study". Journal of Petroleum Science and Engineering. Vol. 162, pp. 852-872. (2018).

[31] Hanson, A.D., Zhang, S.C., Moldowan, J.M., Liang, D.G. and Zhang, B.M. "Molecular organic geochemistry of the Tarim Basin, northwest China". AAPG bulletin. Vol. 84, No. 8, pp.1109-1128. (2000).

[32] Harris, N.B., Freeman, K.H., Pancost, R.D., White, T.S. and Mitchell, G.D. "The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa". AAPG bulletin. Vol. 88, No. 8, pp.1163-1184. (2004).

[33] Heritage report, Project Ref: ECV1851, (2012)

[34] Hosseiny, E., Rabbani, A.R. and Moallemi, S.A. "Source rock characterization of the Cretaceous Sarvak Formation in the eastern part of the Iranian sector of Persian Gulf". Organic geochemistry. Vol. 99, pp.53-66. (2016).

[35] HU, H., LIU, C. and LU, S. "The method and application of using generalized-ΔlgR technology to predict the organic carbon content of continental deep source rocks". Acta Geol. Sin. Vol. 89 (s1), pp. 393-394. (2015).

[36] Huang, H. and Pearson, M.J. "Source rock palaeoenvironments and controls on the distribution of dibenzothiophenes in lacustrine crude oils, Bohai Bay Basin, eastern China". Organic Geochemistry. Vol. 30, No. 11, pp.1455-1470. (1999).

[37] Huang, W.Y. and Meinschein, W.G. "Sterols as ecological indicators". Geochimica et cosmochimica acta. Vol. 43, No. 5, pp.739-745. (1979).

[38] Hunt, J.M. "Petroleum geochemistry and geology", 2nd ed. WH Freeman and Company, New York, pp.743. (1996).

[39] Idan, R.M. "Total Organic Carbon (TOC) Prediction from Resistivity and Porosity Logs: A Case Study from Iraq". Bulletin of the Iraq Natural History Museum. Vol. 14, No. 3, pp.185-195.  (2017).

[40] Jassim, S.Z. and Buday, T. "Late Toarcian-Early Tithonian (Mid-Late Jurassic) Megasequence AP7", chapter 10. Geology of Iraq, first edition: Brno, Czech Republic, Prague and Moravian Museum, pp.117-123. (2006).

[41] Jassim, S.Z. and Goff, J.C. eds. "Geology of Iraq". Doblin, sro, distributed by Geological Society of London. (2006).

[42] Killops, S. and Killops, V. "Introduction to Organic Geochemistry", second edition (paperback). Geofluids, Vol. 5, No. 3, pp.236-237. (2005).

[43] Kubli, T. E. "Deformation history and thin-skinned vs. thickskinned tectonics in the Zagros fold and Thrust Belt of southeastern Kurdistan, Hydrocarbon Exploration in the Zagros Mountains of Iraqi Kurdistan and Iran". Geological Society Conference, Burlington House, Piccadilly. (2013).

[44] Martin, A.Z. "Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences". GeoArabia. Vol. 6, No. 3, pp.445-504. (2001).

[45] Mello, M.R., Gaglianone, P.C., Brassell, S.C. and Maxwell, J.R. "Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils". Marine and petroleum Geology. Vol. 5, No. 3, pp.205-223. (1988).

[46] Mohialdeen, I.M., Hakimi, M.H. and Al-Beyati, F.M. "Geochemical and petrographic characterization of Late Jurassic–Early Cretaceous Chia Gara Formation in Northern Iraq: palaeoenvironment and oil-generation potential". Marine and Petroleum Geology. Vol. 43, pp.166-177. (2013).

[47] Mohialdeen, I.M., Hakimi, M.H. and Al-Beyati, F.M. "Biomarker characteristics of certain crude oils and the oil-source rock correlation for the Kurdistan oilfields, Northern Iraq". Arabian Journal of Geosciences. Vol. 8, No. 1, pp.507-523. (2015).

[48] Mohialdeen, I.M., Mustafa, K.A., Salih, D.A., Sephton, M.A. and Saeed, D.A. "Biomarker analysis of the upper Jurassic Naokelekan and Barsarin formations in the Miran Well-2, Miran oil field, Kurdistan region, Iraq". Arabian Journal of Geosciences. Vol. 11, No. 3, p.51. (2018).

[49] Moldowan, J.M., Fago, F.J., Lee, C.Y., Jacobson, S.R., Watt, D.S., Slougui, N.E., Jeganathan, A. and Young, D.C. "Sedimentary 12-n-propylcholestanes, molecular fossils diagnostic of marine algae". Science. Vol. 247 (4940), pp.309-312. (1990).

[50] Moldowan, J.M., Seifert, W.K. and Gallegos, E.J. "Relationship between petroleum composition and depositional environment of petroleum source rocks". AAPG bulletin. Vol. 69, No. 8, pp.1255-1268. (1985).

[51] Murris, R.J. "Middle East: stratigraphic evolution and oil habitat". American Association of Petroleum Geologists Bulletin. Vol. 64, pp.597-618. (1980).

[52] Othman, R., Arouri, K.R., Ward, C.R. and McKirdy, D.M. "Oil generation by igneous intrusions in the northern Gunnedah Basin, Australia". Organic Geochemistry. Vol. 32, No. 10, pp.1219-1232. (2001).

[53] Passey, Q.R., Creaney, S., Kulla, J.B., Moretti, F.J., Stroud J.D. "A practical model for organic richness from porosity and resistivity logs". AAPG Bull. Vol. 74, No. 12, pp. 1777-1794. (1990).

[54] Passey, Q.R.,   Bohacs, K.  Esch, W.L.  Klimentidis, R.  Sinha, S. "From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs". International Oil and Gas Conference and Exhibition in Beijing, China. (2010).

[55] Peters, K.E. and Moldowan, J.M. "Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum". Organic geochemistry. Vol. 17, No. 1, pp.47-61. (1991).

[56] Peters, K.E. and Moldowan, J.M. "The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments". (1993).

[57] Peters, K.E., Kontorovich, A.E., Moldowan, J.M., Andrusevich, V.E., Huizinga, B.J., Demaison, G.J. and Stasova, O.F. "Geochemistry of selected oils and rocks from the central portion of the West Siberian Basin, Russia". AAPG Bulletin. Vol. 77, No. 5, pp.863-887. (1993).

[58] Peters, K.E., Peters, K.E., Walters, C.C. and Moldowan, J.M. "The biomarker guide (Vol. 1 & 2)". Cambridge University Press. (2005).

[59] Peters, K.E., Walters, C.C. and Moldowan, J.M. "The hydrocarbon potential of Palaeozoic strata in Kraków–Rzeszów area 393 biomarker guide". Biomarkers and isotopes in petroleum exploration and earth history. (2005).

[60] Philp, R.P. "Formation and geochemistry of oil and gas". Treatise on geochemistry. Vol. 7, p.407. (2003).

[61] Pitman, J.K., Steinshouer, D. and Lewan, M.D. "Petroleum generation and migration in the Mesopotamian Basin and Zagros Fold Belt of Iraq: results from a basin-modeling study". GeoArabia. Vol. 9, No. 4, pp.41-72. (2004).

[62] Powell, T.G. and McKirdy, D.M. "Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia". Nature Physical Science. Vol. 243, No. 124, p.37. (1973).

[63] Reed, S. and Ewan, H.M. "Geochemical Report, Norse Hydro" A/S, 6407/7-1. (1986).

[64] Sachsenhofer, R.F., Bechtel, A., Gratzer, R. and Rainer, T.M. "Source rock maturity, hydrocarbon potential and oil- source rock correlation in well Shorish-1, Erbil Province, Kurdistan Region, Iraq". Journal of Petroleum Geology. Vol. 38, No. 4, pp.357-381. (2015).

[65] Sadooni, F.N. and Aqrawi, A.A. "Cretaceous sequence stratigraphy and petroleum potential of the Mesopotamian basin, Iraq". (2000).

[66] Salih, D.A. "Molecular Source and Maturity Parameter Variations with Lithology in the Barnett Shale. Fort Worth Basin, Texas, USA". Master’s thesis (unpublished), Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom. (2013).

[67] Schmoker, J.W. "Determination of organic matter content of Appalachian Devonian shale from gamma-ray logs". AAPG Bull. Vol. 65, No. 7, pp. 1285-1298. (1981).

[68] Schwark, L. and Empt, P. "Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events". Palaeogeography, Palaeoclimatology, Palaeoecology. Vol.  240, No. 1-2, pp.225-236. (2006).

[69] Seifert, W.K. and Moldowan, J.M. "The effect of thermal stress on source-rock quality as measured by hopane stereochemistry". Physics and Chemistry of the Earth. Vol. 12, pp.229-237. (1980).

[70] Seifert, W.K. and Moldowan, J.M. "Use of biological markers in petroleum exploration". In: Johns, R.B. (Ed.). Methods in Geochemistry and Geophysics Vol. 24. Elsevier, Amsterdam, pp. 261–290. (1986).

[71] Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D. and Simmons, M.D. "Arabian plate sequence stratigraphy". GeoArabia Spec. Publ. Vol. 2, p.371. (2001).

[72] Sissakian, V.K., Ibrahim, E.I., Ibrahim, F.A. and Al-Ali, N.M. "Geological Map of Iraq". 1: 1,000,000. State Company of Geological Survey and Mining, Baghdad, Iraq. (2000).

[73] Tissot, B.P. and Welte, D.H. "Petroleum formation and occurrence–second revised and enlarged edition". (1984).

[74] Wang, P.  Chen, Z.  Pang, X.  Hu, K.  Sun, M.  Chen, X. "Revised models for determining toc in shale play: example from devonian duvernay shale, western Canada sedimentary basin.Mar". Petrol. Geol. Vol. 70, pp. 304-319. (2016).

[75] Xie, H.  Yu, B. Zeng, Q.  Feng, Z. "Toc logging interpretation method and its application to yanchang formation shales, the ordos basin". Oil Gas Geol. Vol. 34, No. 6, pp. 731-736. (2013).

[76] Younes, M.A. and Philp, R.P. "Source rock characterization based on biological marker distributions of crude oils in the southern Gulf of Suez, Egypt". Journal of Petroleum Geology. Vol. 28, No. 3, pp.301-317. (2005).

[77] Zhao, P.  Ma, H., Rasouli, V.  Liu, W.  Cai, J.  Huang, Z. "An improved model for estimating the TOC in shale formations". Mar. Petrol. Geol. Vol. 83, pp. 174-183. (2017).

[78] Zhu, L., Zhang, C., Zhang, Z., Zhou, X., Liu,W. "An improved method for evaluating the TOC content of a shale formation using the dual-difference ΔlogR method". Marine and Petroleum Geology. Vol. 102, pp. 800-816. (2019).



 

Comments