Issues‎ > ‎vol22n1‎ > ‎

jzs-10797

Some properties of subspace convex-cyclic operators


Dilan Ahmed1,2, Mudhafar F. Hama3, Jarosław Wožniak4 and Karwan Jwamer3

 

1 Mathematics Department, College of Education, University of Sulaimani,  Sulaimani, Kurditan Region – Iraq

2Computer Engineering-College of Engineering, Komar University of Science and Technology, Sulaimani , Kurditan Region –  Iraq.

3 Mathematics Department,College of Science University of Sulaimani,  Sulaimani, Kurditan Region – Iraq

4 Institute of Mathematics, Department of Mathematics and Physics, University of Szczecin, Ul. Wielkopolska 15, 70-451 Szczecin, Poland   


Original: 20 July 2019       Revised: 10 January 2020     Accepted:April 2020        Published online: 20 June 2020  


Doi Linkhttps://doi.org/10.17656/jzs.10797


Abstract

On a Banach space X, a bounded linear operator A is a called subspace convex-cyclic associated with W as a subspace, if the set  is dense in W for a vector . In this work, we use Hahn- Banach Theorem to show that the extending linear functional preserve subspace convex-cyclic operator property. Also, the algebraic structures of subspace convex-cyclic vectors can be determined, such as the spectrum.


Key Words: convex-cyclic operator; Hahn-Banach theorem; convex-cyclic spectral.


 References

[1] D. Ahmed, M. Hama, J. Wozniak and K. Jwamer, "On subspace convex-cyclic operators", arXiv:1905.04781 [math.DS].

[2] Sh. Axler, "Linear Algebra Done Right", Springer International Publishing, Edu 3, (2015). DOI:10.1007/978-3-319-11080-6.

[3] F. Bayart, E. Matheron, "Dynamics of Linear Operators", Cambridge University Press, New York, (2009).

[4] T. Bermudez, A. Bonilla and N. Feldman, "on convex-cyclic operator", J. Math. Anal and Appl. Vol. 434, No. 2, pp.1166-1181. (2016).

[5] V.I. Bogachev and O.G. Smolyanov, "Topological Vector Spaces and Their Applications", Springer International Publishing, Edu 1, (2017).

[6] P. S. Bourdon, N. S. Feldman, "Somewhere dense orbits are everywhere dense", Indiana Univ. Math. J. Vol. 52, No. 3, pp. 811-819. (2003).

[7] K. G. Grosse-Erdmann, A. Peris, "Linear Chaos", Universitext, Springer, (2011).

[8] R. R. Jiménez-Munguía, R. A. Martínez-Avendaño and A. Peris, "Some questions about subspace-hypercyclic operators", Journal of Mathematical Analysis and Applications. Vol. 408, No. 1, pp. 209-212. (2013).

[9] C. M. Le, "On subspace-hypercyclic operators", Amer. Math. Soc. Vol.  139, No. 8, pp. 2847–2852. (2011).

[10] B. F. Madore, R. A. Martínez-Avendaño, "Subspace hypercyclicity", J. Math. Anal. Appl. Vol. 373, No. 2, pp. 502-511. (2011).

[11] H. Rezaei, "On the convex hull generated by orbit of operators", Linear Algebra and its Applications. Vol. 438, No. 11, pp. 4190-4203. (2013).

[12] H. Rezaei, "Notes on subspace-hypercyclic operators", Journal of Mathematical Analysis and Applications. Vol. 397, No. 1, pp. 428-433. (2013).

[13] W. Rudin, "Functional analysis", McGraw-Hill Series in Higher Mathematics, Mc-Graw Hill, Edu 1, (1973).

 



 

Comments