Issues‎ > ‎vol23n2‎ > ‎


Fabricated silver nanoparticles by a combination of cell-free supernatant of Fusarium solani and Comamonas aquatica and its antibacterial activity

Bikhal Fattah1, Huner Arif1 & Haider Hamzah1*

1Department of Biology, College of Science, University of Sulaimani, Sulaimaniyah, Iraq

* Corresponding author E-mail address:

DOI Link:


The current study involves silver nanoparticles (AgNPs) synthesis, characterization, and antimicrobial activity of nanoparticles produced by a combination of cell-free supernatant (C-FS) of the intimate organisms, Fusarium solani and Comamonas aquatica as synthesis catalysts against Gram-negative and positive human pathogens. The detailed characterization of the Ag NPs was carried out using UV-visible spectroscopy, field emission Scanning Electron Microscopy (FE-SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). From the UV-visible spectroscopy, the absorption peak was found at 442 nm, and FE-SEM images confirmed the formation of AgNPs. Further, TEM and AFM analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of the size between 2.0 - 7.5 nm. Furthermore, the antibacterial activity of AgNPs was determined by the agar well diffusion method, and results showed that AgNPs exhibited excellent antimicrobial activity against Gram-negative (E. coli, Pseudomonas aeruginosa, Salmonella enterica) and Gram-positive (Enterococcus faecalis and Staphylococcus aureus). Finally, The MIC test was performed to test the inhibitory concentration of AgNO3 against the bacteria under investigation. This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against various microorganisms which can endanger human beings.

Key Words: Sliver nanoparticles, Comamonas aquatica, Fusarium solani, Cell- free supernatant


[1] Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. "Molecular mechanisms of

     antibiotic resistance."  Nature reviews microbiology, Vol. (13), No.1, pp. 42-51. (2015).

[2] Patel, R. "Biofilms and antimicrobial resistance." Clinical Orthopaedics and Related Research®, Vol. 437, pp. 41-47. (2005).

[3] Natan, M., & Banin, E. "From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance." FEMS microbiology reviews, Vol. (41), No.3, pp. 302-322. (2017).

[4] Saeb, A., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. "Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria."  The Scientific World Journal. (2014).

[5] Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C., & Yang, D. C. "Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications." Enzyme and microbial technology, Vol. (86), pp.75-83. (2016).

[6] Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. "Silver nanoparticles: Synthesis, medical applications and biosafety." Theranostics,Vol. (10), No.20, pp. 8996. (2020).

[7] Mohamedsalih, P. M., & Sabir, D. K. "Antimicrobial activity of silver nanoparticles with antibiotics against clinically isolated Acinetobacter baumannii". Passer Journal, Vol. (2), No. 2, pp 51-56. (2020).

[8] Asgary, V., Shoari, A., Baghbani-Arani, F., Shandiz, S. A. S., Khosravy, M. S., Janani, A. & Cohan, R. A. "Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary Vaccine." International journal of nanomedicine, Vol. (11), pp.3597. (2016).

[9] Sharma, V. K., Yngard, R. A., & Lin, Y. "Silver nanoparticles: green synthesis and their antimicrobial Activities." Advances in colloid and interface science, Vol. (145), No.1-2, pp. 83-96. (2009).

[10] Gunasekaran, T., Nigusse, T., & Dhanaraju, M. D. "Silver nanoparticles as real topical bullets for wound Healing." Journal of the American college of clinical wound specialists, Vol. (3), No.4, pp. 82-96. (2011).

[11] Le Ouay, B., & Stellacci, F. "Antibacterial activity of silver nanoparticles: a surface science insight." Nano today, Vol. (10). No.3, pp. 339-354. (2015).

[12] Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., & Galdiero, M. "Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects." Applied microbiology and biotechnology, Vol. (98), No.5, pp. 1951-1961. (2014).

[13] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. "A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise." Journal of advanced research, Vol. (7), No. 1, pp.17-28. (2016).

[14] Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. "Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches." International journal of molecular sciences, Vol. (17), No.9, pp.1534. (2016).

[15] AbdelRahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A. E. Z. M., & Husseiny, S. M.  " Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonife."  Saudi journal of biological sciences, Vol. (24), No.1, pp. 208-216. (2017).

[16] Mohamedsalih, P. M., & Sabir, D. K. "Biosynthesis of silver nanoparticles using the aqueous extract of chamomile flower and their antibacterial activity against Acinetobacter spp". Health Biotechnology and Biopharma, Vol. (3), No.4, pp. 48-62. (2020).

[17] Azmath, Pasha, Syed Baker, Devaraju Rakshith, and Sreedharamurthy Satish. " Mycosynthesis of silver nanoparticles bearing antibacterial activity."  Saudi Pharmaceutical Journal, Vol. (24), No.2, pp. 140-146. (2016).

[18] Banerjee, Kangkana, and V. Ravishankar Rai. " A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles."  BioNanoScience, Vol. (8), No. 1, PP. 17-31. (2018).

[19] Gholami-Shabani, M., Akbarzadeh, A., Norouzian, D., Amini, A., Gholami-Shabani, Z., Imani, A. &

       Razzaghi-Abyaneh, M. "Antimicrobial activity and physical characterization of silver nanoparticles green   synthesized using nitrate reductase from Fusarium oxysporum." Applied biochemistry and

       biotechnology, Vol. (172), No. 8, pp. 4084-4098. (2014).

[20] Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. "Synthesis of silver nanoparticles: chemical, physical and biological methods." Research in pharmaceutical sciences, Vol. (9), No. 6, pp. 385. (2014).

[21] Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. "Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants." Applied microbiology and biotechnology, Vol. (90), No. 5, pp. 1609-1624. (2011).

[22] Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. "Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth." Journal of colloid and interface science, Vol. (275), No. 2, pp. 496-502. (2004).

[23] Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. "Biosynthesis of silver nanocrystals by Bacillus licheniformis."  Colloids and surfaces B: Biointerfaces, Vol. (65), No.1, pp.   150-153. (2008).

[24] Paul, D., & Sinha, S. N. "Extracellular synthesis of silver nanoparticles using Pseudomonas   aeruginosa KUPSB12 and its antibacterial activity."  Jordan J Biol Sci, Vol. (7), No.4, pp. 245-250. (2014).

[25] Kashyap PL, Kumar S, Srivastava AK, Sharma A K. "Myconanotechnology in agriculture: a perspective." World J Microbiol Biotechnol, Vol. (29), pp. 191–207. (2013).

[26] Netala, V. R., Bethu, M. S., Pushpalatha, B., Baki, V. B., Aishwarya, S., Rao, J. V., & Tartte, V.

  " Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of   their antioxidant and anticancer activities."   International journal of nanomedicine, Vol. (11), pp. 5683. (2016).

[27] Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. "Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application." Toxicological research, Vol. (32), No 2, pp. 95-102. (2016).


[28] Qurbani, K., & Hamzah, H. "Intimate communication between Comamonas aquatica and Fusarium solani in remediation of heavy metal-polluted environments."  Archives of microbiology, pp. 1-10. (2020).

[29] Hamedi, S., Shojaosadati, S. A., Shokrollahzadeh, S., & Hashemi-Najafabadi, S. "Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity." World Journal of Microbiology and Biotechnology, Vol. (30), No.2, pp. 693-704. (2014).

[30] Rudakiya, D. M., & Pawar, K. "Bactericidal potential of silver nanoparticles synthesized using cell-free extract of Comamonas acidovorans: in vitro and in silico approaches."  3 Biotech, Vol. (7), No. 2, pp. 1-12. (2017).

[31] Singh, H., Du, J., Singh, P., & Yi, T. H. " Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application."  Journal of pharmaceutical analysis, Vol. (8), No. 4, pp. 258-264. (2018).

[32] Chand, K., Abro, M. I., Aftab, U., Shah, A. H., Lakhan, M. N., Cao, D., & Mohamed, A. M. A.  " Greensynthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato."  RSC advances, Vol. (9), No. 30, pp. 17002-17015. (2019).

[33] Shahzad, A., Saeed, H., Iqtedar, M., Hussain, S. Z., Kaleem, A., Abdullah, R., & Chaudhary, A. "Sizecontrolled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects."  Journal of Nanomaterials. (2019).

[34] Ahmed, A. A., Hamzah, H., & Maaroof, M. "Analyzing formation of silver nanoparticles fromthefilamentous fungus Fusarium oxysporum and their antimicrobial activity." Turkish Journal of Biology, Vol. (42), No. 21, pp. 54-62. (2018).

[35] Hamzah, H. M., Salah, R. F., & Maroof, M. N. "Fusarium mangiferae as new cell factories for producing silver nanoparticles."  Journal of microbiology and biotechnology, Vol. (28), No.10, pp.1654-1663. (2018).

[36] Mulvaney, P. "Surface plasmon spectroscopy of nanosized metal particles." Langmuir, Vol. (12), No. 3, pp. 788-800. (1996).

[37] Gopinath, P. M., Narchonai, G., Dhanasekaran, D., Ranjani, A., & Thajuddin, N. Mycosynthesis,

       "Characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial

       pathogens of female infertility cases." asian journal of pharmaceutical sciences, Vol. (10), No.2, pp.138-145. (2015).

[38] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003).

      " Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum."  Colloids and surfaces B: Biointerfaces, Vol. (28), No. 4, pp.313-318. (2003). 

[39] Teulon, J. M., Godon, C., Chantalat, L., Moriscot, C., Cambedouzou, J., Odorico, M., & Pellequer, J. L. "On the operational aspects of measuring nanoparticle sizes." Nanomaterials, Vol. (9), No.1, pp.18. (2019).

[40] Lu, Z., Rong, K., Li, J., Yang, H., & Chen, R. "Size-dependent antibacterial activities of silver

       nanoparticles against oral anaerobic pathogenic bacteria." Journal of Materials Science: Materials in

       Medicine, Vol. (24), No.6, pp. 1465-1471. (2013).

    [41] Raza, M. A.,Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., & Naseem, S. "Size-and shape-dependent

       antibacterial studies of silver nanoparticles synthesized by wet chemical routes." Nanomaterials, Vol. (6), No. 4, pp.74. (2016).

[42] Velmurugan, P., Lee, S. M., Iydroose, M., Lee, K. J., & Oh, B. T. "Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens." Applied microbiology and biotechnology, Vol. (97), No. 1, pp. 361-368. (2013). 

[43] Saxena, J., Sharma, P. K., Sharma, M. M., & Singh, A. "Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties." SpringerPlus, Vol. (5), No.1, pp. 1-10. (2016).

[44] Barros, C. H., Fulaz, S., Stanisic, D., & Tasic, L. "Biogenic nanosilver against multidrug-resistant bacteria (MDRB)."  Antibiotics, Vol. (7), No. 3, pp. 69. (2018).

[45] Gurunathan, S., Kang, M. H., & Kim, J. H. "Combination effect of silver nanoparticles and histone

       deacetylases inhibitor in human alveolar basal epithelial cells."  Molecules, Vol. (23), No. 8, pp.2046. (2018).

[46] Agnihotri, S., Mukherji, S., & Mukherji, S. "Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy." Rsc Advances, Vol. (4), No. 8, pp. 3974-3983. (2014).