Issues‎ > ‎vol23n2‎ > ‎


The impact of Nitrogen and Carbon Sources on the Biofilm Formation of Micrococcus luteus

Alan Ahmed Mahmood1,2,*, Mina Kawa Qader1,3, Barzhawand Ahmed Mahmood1& Lavin Peshraw Hama Salih1

1Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaimaniyah, Kurdistan Region, Iraq

2Laboratory Department, Sulaimaniyah Surgical Teaching Hospital, Sulaimaniyah, Kurdistan Region, Iraq

3Microbiology Department, High-Quality Laboratory, Anwar Sheikha Medical City, Sulaimaniyah, Kurdistan Region, Iraq

* Corresponding author E-mail:

   DOI Link :

This study is conducted to show the influence of different media on the extent and pattern of biofilm formation. Trends of newly emerging pathogens continue steadily. Micrococcus luteus is one of those emerging pathogens. Incidental isolations of this bacteria have been recorded from patients with urinary tract infection and/or immunocompromised conditions. Biofilm formation on the surfaces of wound drainage and urinary catheters has been reported to be the source of recurrence and colonization of the pathogen in those patients. The current study's approach assesses the role of nutrient availability on the patterns of attachment till detachment and dispersion of the biofilms. Different species of bacteria are used to correlate their biofilm formation trend. Micrococcus luteus was chosen in the study due to its emerging pathogenic potential. Validation of biofilm formation is provided by involving Proteus mirabilis; which is an ideal biofilm producer, in parallel with Micrococcus luteus throughout the entire experimental settings. The findings of this study confirm statistically significant differences in biofilm formation patterns when nutritionally different culture media have been utilized to resemble possible environments for the pathogen. Micrococcus luteus has been found to possess the highest potential to produce biofilm in peptone water media where it over paced Proteus mirabilis. Results of the study reveal that both availability and scarcity of carbon and nitrogen sources can influence both positively and negatively on the patterns of biofilm formation by different strains of bacteria and incubation time. Biofilm assessment is an inevitable technique for nosocomial infections due to the complications of antibiotic susceptibility trends that prolong the hospitalization process, which limits treatment capacity.
 Key Words: Biofilm, Micrococcus luteus, Proteus mirabilis, Microtiter Plate Assay    


[1] H. Kanematsu and D. M. Barry, Biofilm and Materials Science. Cham: Springer International Publishing, 2015.

[2] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol., vol. 2, no. 2, pp. 95–108, Feb. 2004, doi: 10.1038/nrmicro821.

[3] M. Jamal, U. Tasneem, T. Hussain, and S. Andleeb, "Bacterial Biofilm: Its Composition, Formation and Role in Human Infections," Res. Rev. J. Microbiol. Biotechnol., vol. 4, no. 3, pp. 1–14, 2015.

[4] J. W. Costerton, “Bacterial Biofilms: A Common Cause of Persistent Infections,” Science (80-. )., vol. 284, no. 5418, pp. 1318–1322, May 1999, doi: 10.1126/science.284.5418.1318.

[5] C. Vuong et al., “Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system,” Cell. Microbiol., vol. 6, no. 3, pp. 269–275, Mar. 2004, doi: 10.1046/j.1462-5822.2004.00367.x.

[6] J. C. NICKEL, M. OLSON, R. J. C. McLEAN, S. K. GRANT, and J. W. COSTERTON, “An Ecological Study of Infected Urinary Stone Genesis in an Animal Model,” Br. J. Urol., vol. 59, no. 1, pp. 21–30, Jan. 1987, doi: 10.1111/j.1464-410X.1987.tb04573.x.

[7] V. Adetunji, “Crystal violet binding assay for assessment of biofilm formation by isolates of Listeria monocytogenes and Listeria spp from a typical tropical abattoir on wood, steel and glass surfaces.,” Glob. Vet., vol. 6, pp. 6–10, 2011.

[8] P. Gilbert, J. Das, and I. Foley, “Biofilm Susceptibility to Antimicrobials,” Adv. Dent. Res., vol. 11, no. 1, pp. 160–167, Apr. 1997, doi: 10.1177/08959374970110010701.

[9] C. Vinodkumar, S. Kalsurmath, and Y. Neelagund, “Utility of lytic bacteriophage in the treatment of multidrug-resistant  Pseudomonas aeruginosa septicemia in mice,” Indian J. Pathol. Microbiol., vol. 51, no. 3, p. 360, 2008, doi: 10.4103/0377-4929.42511.

[10] M. Okada et al., “Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX,” Nat. Chem. Biol., vol. 1, no. 1, pp. 23–24, Jun. 2005, doi: 10.1038/nchembio709.

[11] F. G. Sauer, H. Remaut, S. J. Hultgren, and G. Waksman, “Fiber assembly by the chaperone–usher pathway,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1694, no. 1–3, pp. 259–267, Nov. 2004, doi: 10.1016/j.bbamcr.2004.02.010.

[12] R. D. Waite, A. Papakonstantinopoulou, E. Littler, and M. A. Curtis, “Transcriptome Analysis of Pseudomonas aeruginosa Growth: Comparison of Gene Expression in Planktonic Cultures and Developing and Mature Biofilms,” J. Bacteriol., vol. 187, no. 18, pp. 6571–6576, Sep. 2005, doi: 10.1128/JB.187.18.6571-6576.2005.

[13] S. RAJAN, “Pulmonary infections in patients with cystic fibrosis,” Semin. Respir. Infect., vol. 17, no. 1, pp. 47–56, Mar. 2002, doi: 10.1053/srin.2002.31690.

[14] L. E. C. Rivera, A. P. Ramos, and C. Padilla Desgarennes, “Péptidos antimicrobianos: antibióticos naturales de la piel Artículo de revisión,” Dermatología Rev Mex Vol., vol. 51, no. 2, pp. 57–67, 2007, [Online]. Available:

[15] R. Baselga, I. Albizu, and B. Amorena, “Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review,” Vet. Microbiol., vol. 39, no. 3–4, pp. 195–204, Apr. 1994, doi: 10.1016/0378-1135(94)90157-0.

[16] M. R. Parsek and P. K. Singh, “Bacterial Biofilms: An Emerging Link to Disease Pathogenesis,” Annu. Rev. Microbiol., vol. 57, no. 1, pp. 677–701, Oct. 2003, doi: 10.1146/annurev.micro.57.030502.090720.

[17] Hastyar najmuldeen, “Assessment of Chlorine Resistance Enterobacter cloacae Isolated from Water Storage Tanks in Sulaimaniyah City-Iraq,” Passer, vol. 3, no. 1, 2020, doi: 10.24271/psr.17.

[18] P. Naves, “Effects of human serum albumin, ibuprofen and N-acetyl-l-cysteine against biofilm formation by pathogenic Escherichia coli strains,” J Hosp. Infect, vol. 76, pp. 165–170.

[19] L. S. Havarstein, G. Coomaraswamy, and D. A. Morrison, “An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae.,” Proc. Natl. Acad. Sci., vol. 92, no. 24, pp. 11140–11144, Nov. 1995, doi: 10.1073/pnas.92.24.11140.

[20] J. R. Govan and V. Deretic, “Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.,” Microbiol. Rev., vol. 60, no. 3, pp. 539–574, 1996, doi: 10.1128/mr.60.3.539-574.1996.

[21] P. Sreenivasan, “Clinical response to antibiotics among children with bloody diarrhea,” Indian Paediatr., vol. 50, pp. 340–341, 2013, [Online]. Available:

[22] S. Khan, P. Singh, M. Ansari, and A. Asthana, “Isolation of Shigella species and their resistance patterns to a panel of fifteen antibiotics in mid and far western region of Nepal,” Asian Pacific J. Trop. Dis., vol. 4, no. 1, pp. 30–34, Feb. 2014, doi: 10.1016/S2222-1808(14)60309-1.

[23] C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, “Survival strategies of infectious biofilms,” Trends Microbiol., vol. 13, no. 1, pp. 34–40, Jan. 2005, doi: 10.1016/j.tim.2004.11.010.

[24] L. Ma, M. Conover, H. Lu, M. R. Parsek, K. Bayles, and D. J. Wozniak, “Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix,” PLoS Pathog., vol. 5, no. 3, p. e1000354, Mar. 2009, doi: 10.1371/journal.ppat.1000354.

[25] E. L. Larson, C. Gomez-Duarte, L. V. Lee, P. Della-Latta, D. J. Kain, and B. H. Keswick, “Microbial flora of hands of homemakers,” Am. J. Infect. Control, vol. 31, no. 2, pp. 72–79, Apr. 2003, doi: 10.1067/mic.2003.33.

[26] T.-F. C. Mah and G. A. O’Toole, “Mechanisms of biofilm resistance to antimicrobial agents,” Trends Microbiol., vol. 9, no. 1, pp. 34–39, Jan. 2001, doi: 10.1016/S0966-842X(00)01913-2.

[27] J. B. Lyczak, C. L. Cannon, and G. B. Pier, “Lung Infections Associated with Cystic Fibrosis,” Clin. Microbiol. Rev., vol. 15, no. 2, pp. 194–222, Apr. 2002, doi: 10.1128/CMR.15.2.194-222.2002.

[28] R. P. Novick and E. Geisinger, “Quorum Sensing in Staphylococci,” Annu. Rev. Genet., vol. 42, no. 1, pp. 541–564, Dec. 2008, doi: 10.1146/annurev.genet.42.110807.091640.

[29] D. Hogan, “Why are bacteria refractory to antimicrobials?,” Curr. Opin. Microbiol., vol. 5, no. 5, pp. 472–477, Oct. 2002, doi: 10.1016/S1369-5274(02)00357-0.

[30] K. Poole, “Mechanisms of bacterial biocide and antibiotic resistance,” J. Appl. Microbiol., vol. 92, pp. 55S-64S, May 2002, doi: 10.1046/j.1365-2672.92.5s1.8.x.

[31] C. A. Gordon, N. A. Hodges, and C. Marriott, “Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa,” J. Antimicrob. Chemother., vol. 22, no. 5, pp. 667–674, 1988, doi: 10.1093/jac/22.5.667.

[32] C. Vuong and M. Otto, “Staphylococcus epidermidis infections,” Microbes Infect., vol. 4, no. 4, pp. 481–489, Apr. 2002, doi: 10.1016/S1286-4579(02)01563-0.

[33] L. Foulston, A. K. W. Elsholz, A. S. DeFrancesco, and R. Losick, “The Extracellular Matrix of Staphylococcus aureus Biofilms Comprises Cytoplasmic Proteins That Associate with the Cell Surface in Response to Decreasing pH,” MBio, vol. 5, no. 5, pp. 01667–14, Sep. 2014, doi: 10.1128/mBio.01667-14.

[34] J. C. Nickel and J. W. Costerton, “Bacterial localization in antibiotic-refractory chronic bacterial prostatitis,” Prostate, vol. 23, no. 2, pp. 107–114, 1993, doi: 10.1002/pros.2990230204.

[35] R. Van Houdt and C. W. Michiels, “Biofilm formation and the food industry, a focus on the bacterial outer surface,” J. Appl. Microbiol., vol. 109, no. 4, pp. 1117–1131, 2010, doi: 10.1111/j.1365-2672.2010.04756.x.

[36] K. Lewis, “Riddle of Biofilm Resistance,” Antimicrob. Agents Chemother., vol. 45, no. 4, pp. 999–1007, Apr. 2001, doi: 10.1128/AAC.45.4.999-1007.2001.

[37] R. Edwards and K. G. Harding, “Bacteria and wound healing,” Curr. Opin. Infect. Dis., vol. 17, no. 2, pp. 91–96, Apr. 2004, doi: 10.1097/00001432-200404000-00004.

[38] J. N. Sims et al., “Visual Analytics of Surveillance Data on Foodborne Vibriosis, United States, 1973-2010,” Environ. Health Insights, vol. 5, p. EHI.S7806, Jan. 2011, doi: 10.4137/EHI.S7806.

[39] N. J. Trengove, M. C. Stacey, D. F. McGechie, N. F. Stingemore, and S. Mata, “Qualitative bacteriology and leg ulcer healing,” J. Wound Care, vol. 5, no. 6, pp. 277–280, Jun. 1996, doi: 10.12968/jowc.1996.5.6.277.

[40] D. E. Bradley, “The Length of the Filamentous Pseudomonas aeruginosa Bacteriophage Pf,” J. Gen. Virol., vol. 20, no. 2, pp. 249–252, Aug. 1973, doi: 10.1099/0022-1317-20-2-249.

[41] K. Matsuura, Y. Asano, A. Yamada, and K. Naruse, “Detection of micrococcus Luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor,” Sensors (Switzerland), vol. 13, no. 2, pp. 2484–2493, 2013, doi: 10.3390/s130202484.

[42] A. Tahmourespour, “Biofilm formation potential of oral streptococci in related to some carbohydrate substrates,” African J. Microbiol. Res., vol. 4, no. 11, pp. 1051-1056, 2010.

[43] X. Chen, Y. Xu, H. Winkler, and T. R. Thomsen, “Influence of biofilm growth age, media and antibiotics exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro,” pp. 1–11, 2020, doi: 10.21203/

[44] G. H. Bowden and L. Y, “Nutritional influences on biofilm development,” Adv Dent Res, vol. 11, pp. 81–99.

[45] L. C. Gomes, J. M. R. Moreira, M. Simões, L. F. Melo, and F. J. Mergulhão, “Biofilm Localization in the Vertical Wall of Shaking 96-Well Plates,” Scientifica (Cairo)., vol. 2014, pp. 1–6, 2014, doi: 10.1155/2014/231083.

[46] N. D. Danilova, T. V. Solovyeva, S. V. Mart’yanov, M. V. Zhurina, and A. V. Gannesen, “Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01,” Microbiol. (Russian Fed., vol. 89, no. 4, pp. 493–497, 2020, doi: 10.1134/S0026261720040049.

[47] G. Rodriguez-Nava, A. Mohamed, M. A. Yanez-Bello, and D. P. Trelles-Garcia, “Advances in medicine and positive natural selection: Prosthetic valve endocarditis due to biofilm producer Micrococcus luteus,” IDCases, vol. 20, p. e00743, 2020, doi: 10.1016/j.idcr.2020.e00743.

[48] V. Celiksoy, R. L. Moses, A. J. Sloan, R. Moseley, and C. M. Heard, “Synergistic In Vitro Antimicrobial Activity of Pomegranate Rind Extract and Zinc (II) against Micrococcus luteus under Planktonic and Biofilm Conditions,” Pharmaceutics, vol. 13, no. 6, p. 851, 2021, doi: 10.3390/pharmaceutics13060851.

[49] J. T. Blakeman et al., “Extracellular DNA Provides Structural Integrity to a Micrococcus luteus Biofilm,” Langmuir, vol. 35, no. 19, pp. 6468–6475, 2019, doi: 10.1021/acs.langmuir.9b00297.

[50] Y. Jiang, M. Geng, and L. Bai, “Targeting biofilms therapy: Current research strategies and development hurdles,” Microorganisms, vol. 8, no. 8, pp. 1–34, 2020, doi: 10.3390/microorganisms8081222.

[51] H. Z. Majeed, “Antimicrobial activity of Micrococcus luteus Cartenoid pigment,” Al-Mustansiriyah J. Sci., vol. 28, no. 1, p. 64, 2017, doi: 10.23851/mjs.v28i1.314.