Synthesis of Carbon thin films using Aerosol-Assisted
Chemical Vapour Deposition (AACVD)
Naktal Al-Dulaimi *
1,2
Abstract
References
1 Department of Nanoscience and Applied Chemistry, Medical and Applied Science College, Charmo University, Chamchamal-Sulaimani,
Kurdistan Region, Iraq.
2 Charmo Center for Research Training and Consultancy, Charmo University, 46023 Chamchamal-Sulaimani, Kurdistan Region, Iraq.
*Corresponding author Email: naktal.abdulhafedh@charmouniversity.org
Abstract
Aerosol-assisted chemical vapour deposition (AACVD) technique was used to produce
carbon thin films. The synthesised films have been deposited using chloroform solvent as
a single source precursor at 550 °C. Raman spectroscopy, powder X-Ray diffraction (p.XRD), and scanning electron microscope (SEM) were used to characterize the thin films
and the result shows that carbon thin films successfully have been prepared. Carbon thin
films were produced from chloroform solvent as a single source precursor therefore, this
work recommends to avoid using chloroform as a solvent in AACVD technique when the
deposition carried out at high temperatures (above 500 ºC), to keep the deposited
materials pure from high level of carbon contamination.
Key Words:
Carbon thin films,
AACVD, 2D Materials.
Amorphous Carbon
References
[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,
A.A.Firsov, Electric field effect in atomically thin carbon films, science 306(5696) (2004) 666-669.
[2] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chemical reviews 110(1)
(2010) 132-145.
[3] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov,
Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777) (2006) 1191-1196.
[4] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent
advances in ultrathin two-dimensional nanomaterials, Chemical reviews 117(9) (2017) 6225-6331.
[5] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chemical reviews 113(5)
(2013) 3766-3798.
[6] D. Deng, K. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and
their heterostructures, Nature nanotechnology 11(3) (2016) 218-230.
[7] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Emerging two-dimensional
nanomaterials for electrocatalysis, Chemical reviews 118(13) (2018) 6337-6408.
[8] L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and
nanoparticles, Chemical reviews 118(10) (2018) 4981-5079.
[9] P.J. Harris, New perspectives on the structure of graphitic carbons, Critical Reviews in Solid State and
Materials Sciences 30(4) (2005) 235-253.
[10] W. Jacob, W. Möller, On the structure of thin hydrocarbon films, Applied Physics Letters 63(13) (1993)
1771-1773.
[11] Y. Jiang, Z. Wu, W. Bao, S. Xu, J. Gao, Tunable positive magnetoresistance effect of Co-doped
amorphous carbon films, Journal of Applied Physics 111(7) (2012) 07C510.
[12] X. ZHANG, T. Peng, X. Qingzhong, Study of giant magnetoresistance and giant electroresistance of
carbon based thin film, Rare Metals 25(6) (2006) 617-620.
[13] X. He, W. Li, H. Li, Y. Fan, Investigation of diamondlike carbon thin films synthesized by dual ion beam
assisted deposition, NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH
SECTION B 82(4) (1993) 528-528.
[14] J. Ullmann, G. Schmidt, W. Scharff, Diamond-like amorphous carbon films prepared by rf sputtering in
argon, Thin Solid Films 214(1) (1992) 35-43.
[15] J. Ullmann, K. Baba, H. Martin, G. Wolf, Effect of deposition conditions on the growth and behaviour of
thin carbon films prepared by ion-assisted evaporation, Surface and Coatings Technology 74 (1995) 746-
753.
[16] A.S. Saleemi, A. Abdullah, M. Saeed, M. Anis-ur-Rehman, A. Mahmood, K. Khan, M. Kiani, S.-l. Lee,
Structural and Magnetoresistance Properties of Transfer-Free Amorphous Carbon Thin Films, Crystals
9(3) (2019) 124.
[17] N. Al-Dulaimi, E.A. Lewis, D.J. Lewis, S.K. Howell, S.J. Haigh, P. O'Brien, Sequential bottom-up and
top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of
rhenium disulfide (ReS 2), Chemical Communications 52(50) (2016) 7878-7881.
[18] A. Adeogun, M. Afzaal, P. O'Brien, Studies of Molybdenum Disulfide Nanostructures Prepared by
AACVD Using Single‐Source Precursors, Chemical Vapor Deposition 12(10) (2006) 597-599.
[19] S. Khalid, E. Ahmed, M.A. Malik, D.J. Lewis, S.A. Bakar, Y. Khan, P. O'Brien, Synthesis of pyrite thin
films and transition metal doped pyrite thin films by aerosol-assisted chemical vapour deposition, New
Journal of Chemistry 39(2) (2015) 1013-1021.
[20] N. Al-Dulaimi, D.J. Lewis, X.L. Zhong, M.A. Malik, P. O'Brien, Chemical vapour deposition of rhenium
disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors, Journal of
Materials Chemistry C 4(12) (2016) 2312-2318.
[21] N. Al-Dulaimi, E.A. Lewis, N. Savjani, P.D. McNaughter, S.J. Haigh, M.A. Malik, D.J. Lewis, P.
O’Brien, The influence of precursor on rhenium incorporation into Re-doped MoS 2 (Mo 1− x Re x S 2)
JZS-A Volume 24, Issue 1, June 2022
6
thin films by aerosol-assisted chemical vapour deposition (AACVD), Journal of Materials Chemistry C
5(35) (2017) 9044-9052.
[22] N. Al-Dulaimi, M. Al-Shakban, E.A. Lewis, P.D. McNaughter, F. Alam, S.J. Haigh, D.J. Lewis,
Synthesis of molybdenum-doped rhenium disulfide alloy using aerosol-assisted chemical vapour
deposition, Materials Science in Semiconductor Processing 127 (2021) 105718.
[23] D.J. Lewis, A.A. Tedstone, X.L. Zhong, E.A. Lewis, A. Rooney, N. Savjani, J.R. Brent, S.J. Haigh, M.G.
Burke, C.A. Muryn, Thin films of molybdenum disulfide doped with chromium by aerosol-assisted
chemical vapor deposition (AACVD), Chemistry of Materials 27(4) (2015) 1367-1374.
[24] M. Al-Shakban, N. Al-Dulaimi, T. Xaba, A. Raheel, Hot Injection Synthesis of Orthorhombic SnS
Nanoparticles from Bis (ON-Propyldithiocarbonato) Diphenyltin (IV), Journal of Nano Research, Trans
Tech Publ, 2021, pp. 27-34.
[25] N. Savjani, E.A. Lewis, M.A. Bissett, J.R. Brent, R.A. Dryfe, S.J. Haigh, P. O’Brien, Synthesis of Lateral
Size-Controlled Monolayer 1 H-MoS2@ Oleylamine as Supercapacitor Electrodes, Chemistry of
Materials 28(2) (2016) 657-664.
[26] M. Al-Shakban, Z. Xie, N. Savjani, M.A. Malik, P. O’Brien, A facile method for the production of SnS
thin films from melt reactions, Journal of Materials Science 51(13) (2016) 6166-6172.
[27] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion
batteries, Energy & Environmental Science 2(6) (2009) 638-654.
[28] T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors, Materials Today 16(7-8)
(2013) 272-280.
[29] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high
electrocatalytic activity for oxygen reduction, science 323(5915) (2009) 760-764.
[30] H.-Y. Du, C.-H. Wang, H.-C. Hsu, S.-T. Chang, H.-C. Huang, L.-C. Chen, K.-H. Chen, Graphene
nanosheet–CNT hybrid nanostructure electrode for a proton exchange membrane fuel cell, International
journal of hydrogen energy 37(24) (2012) 18989-18995.
[31] S. Wang, T. Wei, Z. Qi, Supercapacitor Energy Storage Technology and its Application in Renewable
Energy Power Generation System, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 2805-2809.
[32] H.-M. Ju, S.-H. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes, J. Korean
Phys. Soc 57(6) (2010) 1649.
[33] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical
review B 61(20) (2000) 14095.
[34] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike
carbon, Physical review B 64(7) (2001) 075414.
[35] N. Bouts, M. Gaillard, L. Donero, A. El Mel, E. Gautron, B. Angleraud, C. Boulmer-Leborgne, P.Tessier,
Growth control of carbon nanotubes using nanocomposite nickel/carbon thin films, Thin Solid Films 630
(2017) 38-47.
[36] M. Pang, A.J. Cairns, Y. Liu, Y. Belmabkhout, H.C. Zeng, M. Eddaoudi, Highly monodisperse MIII-
based soc-MOFs (M= In and Ga) with cubic and truncated cubic morphologies, Journal of the American
chemical society 134(32) (2012) 13176-13179.
[37] J.-Y. Ho, M.H. Huang, Synthesis of submicrometer-sized Cu2O crystals with morphological evolution
from cubic to hexapod structures and their comparative photocatalytic activity, The Journal of Physical
Chemistry C 113(32) (2009) 14159-14164.
[38] B. Cheng, M. Lei, J. Yu, X. Zhao, Preparation of monodispersed cubic calcium carbonate particles via
precipitation reaction, Materials Letters 58(10) (2004) 1565-1570.