A Microbiological Study on Clinical Isolates of
Coagulase-Negative Staphylococci (CoNS) from
Sulaimaniyah Hospitals
Fadia Farouk AL-Janabi1*, Huner Hiwa Arif1&Paywast Jamal Jalal1
Abstract
References
1Department of Biology, College of Science, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
*Corresponding author Email: fadia.aljanabi30@gmail.com
Abstract
The purpose of this study was to identify and isolate different coagulase.negative staphylococci (CoNS) species associated with clinical samples with
their virulence factors. For this purpose, 355 clinical samples were taken from
various Hospitals in Sulaimaniyah city. Different species of CoNS were
identified by using (blood, MacConkey, Mannitol salt) agars, biochemical
tests, and VITEK® 2 compact system. The phenotypic characterization of
hemolysin was based on the hemolysis pattern of CoNS on sheep blood agar.
Moreover, the biofilm detection in CoNS was performed by using a microtiter
plate (MTP). The various biofilm and virulence genes were detected using
specific primers to detect mecA, hla, hlb, hld, hlg and the icaAD, fnbA, and
bap genes, respectively. The number of MR-CoNS and MS-CoNS were 31
(96.8%) and 1 (3.1%), respectively, out of 32 isolates. The availability of the
mecA gene, responsible for the resistance of CoNS to methicillin, was found
in (100%) of CoNS species related to clinical samples. Interestingly, the
hemolysin genes were detected on the plasmids instead of the chromosomal
DNA, and these results indicated that the CoNS could be the primary cause of
nosocomial infection.
Key Words:
Coagulase-negative
staphylococci (CoNS).
Hemolysin genes. Microtiter
plate (MTP). Biofilm gene
References
[1] Cunha and R. A. O. Calsolari, “Toxigenicity in Staphylococcus aureus and coagulase-negative
staphylococci: epidemiological and molecular aspects,” Microbiol. Insights, vol. 1, p. MBI--S796, 2008.
[2] T. M. de Moura et al., “Prevalence of enterotoxin-encoding genes and antimicrobial resistance in
coagulase-negative and coagulase-positive Staphylococcus isolates from black pudding,” Rev. Soc. Bras.
Med. Trop., vol. 45, no. 5, pp. 579–585, 2012.
[3] J. R. Lentino, M. Narita, and V. L. Yu, “New antimicrobial agents as therapy for resistant gram-positive
cocci,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 27, no. 1, pp. 3–15, 2008, doi: 10.1007/s10096-007-
0389-y.
[4] D. C. Shore, Anna C and Coleman, “Staphylococcal Cassette Chromosome mec: Recent Advances and
New Insights,” Int. J. Med. Microbiol., vol. 303, pp. 350–359, 2013.
[5] M. S. Aski, "Characterization of hemolysins of Staphylococcus strains isolated from human and bovine,
southern Iran," ranian J. Vet. Res., vol. 15, no. 4, p. 326, 2014, doi: 10.22099/ijvr.2014.2586.
[6] D. Oliveira, A. Borges, and M. Simões, “Staphylococcus aureus Toxins and Their Molecular Activity in
Infectious Diseases,” toxin, vol. 10, no. 6, p. 25, 2018, doi: 10.3390/toxins10060252.
[7] L. Pinheiro, C. I. Brito, A. de Oliveira, P. Y. F. Martins, V. C. Pereira, and M. de L. R. de S. da Cunha,
"Staphylococcus epidermidis and Staphylococcus haemolyticus: Molecular detection of cytotoxin and
enterotoxin genes," Toxins (Basel)., vol. 7, no. 9, pp. 3688–3699, 2015, doi: 10.3390/toxins7093688.
[8] K. Burnside et al., “Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a
Serine / Threonine Kinase and Phosphatase,” PLoS One, vol. 5, no. 6, 2010, doi:
10.1371/journal.pone.0011071.
[9] C. Marconi, M. Cunha, J. P. Araújo Jr, and L. Rugolo, “Standardization of the PCR technique for the
detection of delta toxin in Staphylococcus spp.,” J. Venom. Anim. Toxins Incl. Trop. Dis., vol. 11, no. 2,
pp. 117–128, 2005.
[10] M. M. Dinges, P. M. Orwin, and P. M. Schlievert, “Exotoxins of Staphylococcus aureus,” Clin.
Microbiol. Rev., vol. 13, no. 1, pp. 16–34, 2000.
[11] L. B. Shrestha, N. R. Bhattarai, and B. Khanal, “Antibiotic resistance and biofilm formation among
coagulase-negative staphylococci isolated from clinical samples at a tertiary care hospital of eastern
Nepal,” Antimicrob. Resist. Infect. Control, vol. 6, no. 1, pp. 1–7, 2017, doi: 10.1186/s13756-017-0251-
7.
[12] B. Kot, H. Sytykiewicz, and I. Sprawka, “Expression of the biofilm-associated genes in methicillin.resistant Staphylococcus aureus in biofilm and planktonic conditions,” Int. J. Mol. Sci., vol. 19, no. 11,
2018, doi: 10.3390/ijms19113487.
[13] K. Becker, C. Heilmann, and G. Peters, “Coagulase-negative staphylococci,” Clin. Microbiol. Rev., vol.
27, no. 4, pp. 870–926, 2014, doi: 10.1128/CMR.00109-13.
[14] T. Maira-Litrán et al., “Immunochemical Properties of the Staphylococcal,” vol. 70, no. 8, pp. 4433–
4440, 2002, doi: 10.1128/IAI.70.8.4433.
[15] A. Piette and G. Verschraegen, “Role of coagulase-negative staphylococci in human disease,” Vet.
Microbiol., vol. 134, no. 1–2, pp. 45–54, 2009, doi: 10.1016/j.vetmic.2008.09.009.
[16] E. Knecht and F. Go, “Bap-dependent biofilm formation by pathogenic species of Staphylococcus :
evidence of horizontal gene transfer ?,” Microbiology, vol. 151, no. 7, pp. 2465–2475, 2005, doi:
10.1099/mic.0.27865-0.
[17] P. Herman-bausier, S. El-kirat-chatel, T. J. Foster, J. A. Geoghegan, and F. Dufrêne, "Staphylococcus
aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic
Bonds," MBio, vol. 6, no. 3, pp. 1–10, 2015, doi: 10.1128/mBio.00413-15.Invited.
[18] W. E. Kloos and K. H. Schleifer, "Simplified Scheme for Routine Identification of Human
Staphylococcus Species g," J. Clin. Microbiol., vol. 1, no. 1, pp. 82–88, 1975.
JZS-A Volume 24, Issue 1, June 2022
25
[19] R. Buxton, “Blood Agar Plates and Hemolysis Protocols,” Am. Soc. Microbiol., no. May 2019, pp. 1–
9, 2005.
[20] A. Ferrari and A. Signoroni, “Automatic hemolysis identification on aligned dual-lighting images of
cultured blood agar plates,” Comput. Methods Programs Biomed., 2017.
[21] T. Mathur, S. Singhal, S. Khan, D. J. Upadhyay, T. Fatma, and A. Rattan, “Detection of biofilm
formation among the clinical isolates of staphylococci: An evaluation of three different screening
methods,” Indian J. Med. Microbiol., vol. 24, no. 1, pp. 25–29, 2006, doi: 10.4103/0255-0857.19890.
[22] P. S. Panda, U. ChaudharPanda, Pragyan Swagatika, Uma Chaudhary, Surya K Dube, and others. 2016.
“Comparison of Four Different Methods for Detection of Biofilm Formation by Uropathogens.” Indian
Journal of Pathology and Microbiology 59 (2): 177.y, S. K. Dube, and others, “Comparison of four
different methods for detection of biofilm formation by uropathogens,” Indian J. Pathol. Microbiol., vol.
59, no. 2, p. 177, 2016.
[23] H. M. Hamzah, R. F. Salah, and M. N. Maroof, “Fusarium mangiferae as new cell factories for
producing silver nanoparticles,” J. Microbiol. Biotechnol., vol. 28, no. 10, pp. 1654–1663, 2018, doi:
10.4014/jmb.1806.06023.
[24] G. A. Costa et al., “Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34
against Staphylococcus aureus and Enterococcus faecalis,” An. Acad. Bras. Cienc., vol. 90, no. 1, pp.
73–84, 2018, doi: 10.1590/0001-3765201820160131.
[25] R. Seng et al., “Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS)
isolated from community and hospital environments,” PLoS One, vol. 12, no. 8, pp. 1–13, 2017, doi:
10.1371/journal.pone.0184172.
[26] C. S. Aher, "The isolation pattern, species distribution and antibiotic susceptibility profile of coagulase
negative Staphylococci : emerging opportunistic pathogens * Correspondence Info :," nt J Biomed Adv
Res, vol. 3809, pp. 1–3, 2014, doi: 10.7439/ijbar.
[27] A. Debnath, D. Ghosh, and R. Ghosh, “Detection of Antibiotic Susceptibility Pattern and Methicillin
Resistance among the Clinical Isolates of Coagulase Negative Staphylococci ( CONS ) in a Rural
Tertiary Care Hospital,” Int. J. Heal. Sci. Res., vol. 10, no. June, pp. 338–345, 2020.
[28] T. Kitti, R. Seng, R. Thummeepak, and S. Sitthisak, “Biofilm Formation of Methicillin-resistant
Coagulase-Negative Staphylococci Isolated from Clinical Samples in Northern Thailand,” J. Glob.
Infect. Dis., vol. 11, no. 3, p. 112, 2019, doi: 10.4103/jgid.jgid.
[29] S. Teeraputon et al., “Prevalence of methicillin resistance and macrolide – lincosamide – streptogramin
B resistance in Staphylococcus haemolyticus among clinical strains at a tertiary-care hospital in
Thailand,” New Microbes New Infect., vol. 19, pp. 28–33, 2017, doi: 10.1016/j.nmni.2017.05.007.
[30] R. M. A. Halim, N. N. Kassem, and B. S. Mahmoud, “Detection of biofilm producing staphylococci
among different clinical isolates and its relation to methicillin susceptibility,” Open Access Maced. J.
Med. Sci., vol. 6, no. 8, pp. 1335–1341, 2018, doi: 10.3889/oamjms.2018.246.
[31] C. Secchi et al., “Identification and Detection of Methicillin Resistance in Non -Epidermidis Coagulase.Negative Staphylococci,” Brazilian J. Infect. Dis., vol. 12, pp. 316–320, 2008.
[32] A. Socohou et al., "Antibiotics Resistance and Biofilm Formation Capacity of Staphylococcus spp.
Strains Isolated from Surfaces and Medicotechnical Materials," Int. J. Microbiol., vol. 2020, 2020.
[33] R. D. Walker, Standards for antimicrobial susceptibility testing., vol. 60, no. 9. 1999.
[34] F. Ã. Koksal, H. Yasar, and M. Samasti, "Antibiotic resistance patterns of coagulase-negative
staphylococcus strains isolated from blood cultures of septicemic patients in Turkey," Microbiol. Res.,
vol. 164, no. 4, pp. 404–410, 2007, doi: 10.1016/j.micres.2007.03.004.
[35] Z. K. Al-sultany and A. H. Al-charrakh, “Antibiotic resistance patterns of coagulase negative
Staphylococcus (CoNS) strains isolated from blood stream infections in Babylon province, Iraq,” Ann.
Trop. Med. Public Heal., vol. 23, no. 16, pp. 231–633, 2020, doi: 10.36295/ASRO.2020.231633.
[36] S. Natoli et al., “Characterization of coagulase-negative staphylococcal isolates from blood with
reduced susceptibility to glycopeptides and therapeutic options,” BMC Infect. Dis., vol. 9, no. 1, pp. 1–
8, 2009.
[37] W. Chajkecka-Wierzchowska, A. Zadernowska, B. Nalepa, M. Sierpińska, and Ł. Łaniewska.Trokenheim, “Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal
origin--phenotypic and genotypic antibiotic resistance,” Food Microbiol., vol. 46, pp. 222–226, 2015,
doi: 10.1016/j.fm.2014.08.001.
[38] S. Dzhoraeva, N. Sobol, and H. Ivantsova, “Phenotypical characteristics of the biological properties of
staphylococci withdrawn from patients with allergic dermatitis,” EUREKA Heal. Sci., no. 1, pp. 15–21,
JZS-A Volume 24, Issue 1, June 2022
26
2020, doi: 10.21303/2504-5679.2020.001125.
[39] M. S. Okee et al., "Original Article Prevalence of virulence determinants in Staphylococcus epidermidis
from ICU patients in Kampala, Uganda," J. Infect. Dev. Ctries., vol. 6, pp. 242--250, 2012.
[40] M. Nasaj, Z. Saeidi, B. Asghari, G. Roshanaei, and M. R. Arabestani, “Identification of hemolysin
encoding genes and their association with antimicrobial resistance pattern among clinical isolates of
coagulase-negative Staphylococci,” BMC Res. Notes, vol. 13, no. 1, pp. 4–9, 2020, doi: 10.1186/s13104-
020-4938-0.
[41] D. Ariyanti, S. Isrina, O. Salasia, and S. Tato, “Characterization of Haemolysin of Staphylococcus
aureus Isolated from Food of Animal Origin,” Indones. J. Biotechnol., vol. 16, no. I, pp. 32–37, 2011.
[42] R. A. Nasr, H. M. AbuShady, and H. S. Hussein, “Biofilm formation and presence of icaAD gene in
clinical isolates of staphylococci,” Egypt. J. Med. Hum. Genet., vol. 13, no. 3, pp. 269–274, 2012, doi:
10.1016/j.ejmhg.2012.04.007.
[43] R. F. Rampelotto et al., “Assessment of different methods for the detection of biofilm production in
coagulase-negative staphylococci isolated from blood cultures of newborns,” Rev. Soc. Bras. Med. Trop.,
vol. 51, no. 6, pp. 761–767, 2018, doi: 10.1590/0037-8682-0171-2018.
[44] B. Serray et al., "Genes encoding adhesion factors and biofilm formation in methicillin-resistant
Staphylococcus aureus in Morocco," J. Infect. Dev. Ctries., vol. 10, no. 08, 2016, doi: 10.3855/jidc.8361.
[45] C. R. Arciola and L. Baldassarri, “Presence of icaA and icaD Genes and Slime Production in a
Collection of Staphylococcal Strains from Catheter-Associated Infections,” J. Clin. Microbiol., vol. 39,
no. 6, pp. 2151–2156, 2001, doi: 10.1128/JCM.39.6.2151.
[46] K. M. Conlon, H. Humphreys, and J. P. O. Gara, “icaR Encodes a Transcriptional Repressor Involved
in Environmental Regulation of ica Operon Expression and Biofilm Formation in Staphylococcus
epidermidis,” J. Bacteriol., vol. 184, no. 16, pp. 4400–4408, 2002, doi: 10.1128/JB.184.16.4400.
[47] S. Dobinsky et al., “Glucose-Related Dissociation between icaADBC Transcription and Biofilm
Expression by Staphylococcus epidermidis : Evidence for an Additional Factor Required for
Polysaccharide Intercellular Adhesin Synthesis,” J. Bacteriol., vol. 185, no. 9, pp. 2879–2886, 2003,
doi: 10.1128/JB.185.9.2879.
[48] M. Yousefi, M. R. Pourmand, F. Fallah, A. Hashemi, R. Mashhadi, and A. Nazari-Alam,
“Characterization of Staphylococcus aureus biofilm formation in urinary tract infection,” Iran. J. Public
Health, vol. 45, no. 4, pp. 485–493, 2016.
[49] N. Giormezis et al., “Coagulase-negative staphylococcal bloodstream and prosthetic-device-associated
infections: the role of biofilm formation and distribution of adhesin and toxin genes,” J. Med. Microbiol.,
no. 2014, pp. 1500–1508, 2017, doi: 10.1099/jmm.0.075259-0.
[50] M. Otto, “Staphylococcal Biofilms,” in Bacterial Biofilms, T. Romeo, Ed. Springer, Berlin, Heidelberg,
2008, pp. 207–228