Issues‎ > ‎vol24n1‎ > ‎


Structural and Optical Properties of R6G Doped Nanotitania Thin Films Deposited via Sol–Gel Dip-coating Meth
Muhammad A. Saeed1 , Majida A. Ameen 1& Aras S. Mahmood 1 

1 Department of Physics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq 

*Corresponding author’s E-mail:

Pure and rhodamine 6G (R6G) doped titanium dioxide (TiO2) nanostructure thin films with different concentrations (310-4 , 310-5 , 310-6 , and 310-7 ) M of doped TiO2 sol were deposited on glass substrate via dip-coated sol-gel method. Amorphous structure of the pure and doped TiO2 thin films was identified by X-ray diffraction (XRD) technique. UV-Visible (UV-vis) and fluorescence spectrophotometry techniques were used to study optical and spectroscopic characterization of the samples, respectively. The absorption spectra for all pure and doped TiO2 films indicate a strong absorbance in the UV region which open the possible application of these films for UV filter optical element. 50 nm blue shift of the absorption edge for the TiO2 films with respect to the sol was observed which proves the nanostructure texture of TiO2 thin films. Upon increasing dye concentration, a red shift in the maximum fluorescence emission peaks of R6G ethanolic solution and doped TiO2 sol was observed. The presence of R6G dye molecules in the matrix of TiO2 films is demonstrated by the appearance of two distinct intensity fluorescence peaks at 540 and 600 nm. Various fluorescence peaks of R6G doped TiO2 thin films were observed in UV-vis region under 300 nm pumping wavelength

Key Words: Nanostructure TiO2 thin films, R6G dye, dip-coated sol-gel, fluorescence emission spectrum.

[1] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications", Advanced Materials, Vol. (15), Issue. 5, pp.353-389. (2003). [2] Reisfeld, R. "Prospects of sol–gel technology towards luminescent materials", Optical Materials, Vol. (16), pp.1-7. (2001). [3] de Azevedo, W. M., da Silva Jr, E. F., Pepe, I., Ferreira da Silva, A., Tomas, S. A., Palomino, R., Lozada, R., Persson, C., and Ahuja, R. "Spectroscopic Properties of TiO2 Sol-Gel Films Doped with Rhodamine 6G Dye", 3rd Brazil MRS Meeting, Symposium A, October 10-13, (2004). [4] Ameen, M. A. and Arif, G. K. "Structural and spectroscopic study of Ho3+ -doped nanotitania host prepared using a sol–gel technique". Luminescence, Vol. (35), pp. 1109– 1117 (2020). [5] Gupta, K.K., Jassal, M. and Agrawal, A.K. "Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning", Indian Journal of Fibre and Textile Research, Vol. (33), pp. 443–450 (2008). [6] Zarzycki, J., Prassas, M. and Phalippou, J. " Synthesis of glasses from gels: the problem of monolithic gels", Journal of Materials Science, Vol. (17), pp. 3371–3379 (1982). [7] Brinker, C. J. and Scherer, G. W. “Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing”, San Diego, Academic Press, Inc., (1990). [8] Dislich, H. “Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes”, Ed. L. C. Klein, New Jersey, Noyes Publications, pp. 50. (1988). [9] Livage, J., Babonneau, F. and Sanchez, C. “sol-gel chemistry for optical material, in Sol-Gel Optics Processing and Applications”, Ed. L. C. Klein, New York, Springer Science and Business Media, LLC, pp. 39. (1994). [10] Palomino-Merino, R., Torres-Kauffman, J., Lozada-Morales, R., Portillo-Moreno, O., Garcia-Rocha, M. and Zelaya-Angel, O. "Photoluminescence of Rhodamine 6G-doped amorphous TiO2 thin films grown by sol–gel", Vacuum, Vol. (81), pp. 1480–1483 (2007). [11] Nahak, B. K., Subudhi, T. S. K., Pradhan, L. K., Panigrahi, A., Roshan, R., Mahato, S. S. and Mahata, S. " An Investigation on Photocatalytic Dye Degradation of Rhodamine 6G Dye with Fe- and Ag-Doped TiO2 Thin Films", Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems (MCCS 2019), pp. 295-307 (2019). [12] Chrysicopoulou, P., Davazoglou, D., Trapalis, Chr. and Kordas G. "Optical properties of very thin (<100 nm) sol–gel TiO2 films", Thin Solid Films, Vol. (323), pp. 188–193 (1998). [13] Su, C., Hong, B.-Y. and Tseng, C.-M. "Sol–gel preparation and photocatalysis of titanium dioxide", Catalysis Today, Vol. (96), pp. 119–126 (2004). [14] Lange, R. W. and Sowman, H. G. "Shaped and Fired Articles of TiO2". U.S. Pat. No. 4 166 147, (1979). [15] Burns, A., Hayes, G., Li, W., Hirvonen, J., Demaree, J. D. and Shah, S. I. "Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures", Materials Science and Engineering: B, Vol. (111), Issues 2–3, pp. 150-155 (2004). [16] Sanchez C. and Ribot, F. "Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry", New Journal of Chemistry, Vol. (18), pp. 1007-1047 (1994). [17] Tomas, S. A., Stolik, S., Palomino, R., Lozada, R., Persson, C., Ahuja, R., Pepe, I. and da Silva, A. F. "Optical properties of rhodamine 6G-doped TiO2 sol-gel films", Journal de Physique IV France, Vol. (125), pp. 415-417 (2005). JZS-A Volume 24, Issue 1, June 2022 125 [18] Wang, X., Wu, G., Zhou, B. and Shen, J. "Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process", Materials, Vol. (6), pp. 2819-2830 (2013). [19] Park, Y. R. and Kim, K. J. "Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping", Thin Solid Films, Vol. (484), pp. 34– 38 (2005). [20] Reisfeld, R., Brusilovsky, D., Eyal, M., Miron, E., Burstein, Z. and Ivri, J. "A new solid-state tunable laser in the visible", Chemical Physics Letters, Vol. (160), No. 1, pp. 43-44 (1989). [21] Arbeloa, F. L., Gonzalez, I. L., Ojeda, P. R. and Arbeloa, I. L. "Aggregate Formation of Rhodamine 6G in Aqueous Solution", Journal of the Chemical Society, Faraday Transactions 2, Vol. (78), pp. 989-994 (1982). [22] On, C., Tanyi, E. K., Harrison, E., and Noginov, M. A. "Effect of molecular concentration on spectroscopic properties of poly(methylmethacrylate) thin films doped with rhodamine 6G dye", Optical Materials Express, Vol. (7), No. 12, pp. 4286-4295 (2017). [23] Jensen, L. and Schatz, G. C. "Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time.Dependent Density Functional Theory", Journal of Physical Chemistry A, Vol. (110), No. 18, pp. 5973- 5977 (2006). [24] Sugiarto, I. T., Isnaeni and Putri, K. Y. "Analysis of dual peak emission from Rhodamine 6G organic dyes using photoluminescence", Journal of Physics: Conference Series, Vol. (817), pp. 012047-1-012047-6 (2017). [25] Vogel, R., Meredith, P., Harvey, M.D. and Rubinsztein-Dunlop, H. "Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites", Spectrochimica Acta Part A, Vol. (60), pp. 245–249 (2004). [26] Bartl, M. H., Boettcher, S. W., Hu, E. L., and Stucky, G. D. "Dye-activated hybrid organic/inorganic mesostructured titania waveguides", Journal of American Chemical Society, Vol. (126), pp. 10826-10827 (2004). [27] Grabis, J., Karashanova, D., Filkova, D., Garlanov, D. and Vissokov, G. “Synthesis and Characterization of Nanosized Composite Material Consisting of Ferromagnetic Core and Insulating Shell, in Nanoscience & Nanotechnology, Issue 12”, Eds. Balabanova, E. and Mileva, E., Bulgaria, BAS and NCCNT, pp. 19- 22 (2012). [28] Venkateswarlu, P., George, M. C., Rao, Y. V., Jagannath, H., Chakrapani, G. and Miahnahri, A. "Transient excited singlet state absorption in Rhodamine 6G", Pramana - J Phys, Vol. (28), No. 1, pp. 59– 71 (1987). [29] Chen, X. and Mao, S.S. "Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications", Chemical Reviews, Vol. (107), No. 7, pp. 2891–2959 (2007). [30] Innocenzi, P., Kozuka, H. and Yoko, T. "Dimer-to-monomer transformation of rhodamine 6G in sol—gel silica films", Journal of Non-Crystalline Solids, Vol. (201), pp. 26-36 (1996). [31] Kasha, M., Rawls, H. R. and Ashraf El-Bayoumi, M. "The exciton model in molecular spectroscopy”, Pure and Applied Chemistry, Vol. (11), No. 3-4, pp. 371-392 (1965). [32] Valencia, S., Marín, J. M. and Restrepo, G. "Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment", The Open Materials Science Journal, Vol. (4), pp. 9-14 (2009). [33] Gonçalves, M. C., Pereira, J. C., Matos, J. C. and Vasconcelos, H. C. "Photonic Band Gap and Bactericide Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO2 ", Molecules, Vol. (23), pp. 1677–1696 (2018). [34] Li, F.B. and Li, X.Z. "The enhancement of photodegradation efficiency using Pt–TiO2 catalyst", Chemosphere, Vol. (48), pp. 1103–1111 (2002). [35] Zehentbauer, F.M., Moretto, C., Stephen, R., Thevar, T., Gilchrist, J.R., Pokrajac, D., Richard, K.L. and Kiefer, J. "Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. (121), pp. 147–151 (2014). JZS-A Volume 24, Issue 1, June 2022 126 [36] Gao, Y., Masuda, Y., Peng, Z., Yonezawa, T. and Koumoto, K. "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution", Journal of Materials Chemistry, Vol. (13), pp. 608–613 (2003). [37] Sildos, I., Suisalu, A., Aarik, T., Sekiya, J. and Kurita, S. "Self-trapped exciton emission in crystalline anatase", Journal of Luminescence, Vol. (87-89), pp. 290-292 (2009). [38] Abdullah, S. A., Sahdan, M. Z., Nafarizal, N., Saim, H., Bakri, A. S., Cik Rohaida, C. H., Adriyanto, F. and Sari, Y. "Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering", Journal of Physics: Conference Series, Vol. (995), pp. 012067- 1-012067-9 (2018). [39] Yu, J. C., Yu, J., Ho, W., Jiang, Z. and Zhang, L. "Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders", Chemistry of Materials, Vol. (14), pp. 3808-3816 (2002). [40] Deb, S. K. "Photoconductivity and photoluminescence in amorphous titanium dioxide", Solid State Communications, Vol. (11), pp. 713-715 (1972)