Structural and Optical Properties of R6G Doped
Nanotitania Thin Films Deposited via Sol–Gel Dip-coating Meth
Muhammad A. Saeed1
, Majida A. Ameen 1& Aras S. Mahmood 1
Abstract
References
1 Department of Physics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
*Corresponding author’s E-mail: muhammad.saeed@univsul.edu.iq
Abstract
Pure and rhodamine 6G (R6G) doped titanium dioxide (TiO2) nanostructure thin films
with different concentrations (310-4
, 310-5
, 310-6
, and 310-7
) M of doped TiO2 sol
were deposited on glass substrate via dip-coated sol-gel method. Amorphous structure of
the pure and doped TiO2 thin films was identified by X-ray diffraction (XRD) technique.
UV-Visible (UV-vis) and fluorescence spectrophotometry techniques were used to study
optical and spectroscopic characterization of the samples, respectively. The absorption
spectra for all pure and doped TiO2 films indicate a strong absorbance in the UV region
which open the possible application of these films for UV filter optical element. 50 nm
blue shift of the absorption edge for the TiO2 films with respect to the sol was observed
which proves the nanostructure texture of TiO2 thin films. Upon increasing dye
concentration, a red shift in the maximum fluorescence emission peaks of R6G ethanolic
solution and doped TiO2 sol was observed. The presence of R6G dye molecules in the
matrix of TiO2 films is demonstrated by the appearance of two distinct intensity
fluorescence peaks at 540 and 600 nm. Various fluorescence peaks of R6G doped TiO2
thin films were observed in UV-vis region under 300 nm pumping wavelength.
Key Words:
Nanostructure TiO2
thin films, R6G dye,
dip-coated sol-gel,
fluorescence emission
spectrum.
References
[1] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. "One-Dimensional
Nanostructures: Synthesis, Characterization, and Applications", Advanced Materials, Vol. (15), Issue. 5,
pp.353-389. (2003).
[2] Reisfeld, R. "Prospects of sol–gel technology towards luminescent materials", Optical Materials, Vol. (16),
pp.1-7. (2001).
[3] de Azevedo, W. M., da Silva Jr, E. F., Pepe, I., Ferreira da Silva, A., Tomas, S. A., Palomino, R., Lozada,
R., Persson, C., and Ahuja, R. "Spectroscopic Properties of TiO2 Sol-Gel Films Doped with Rhodamine
6G Dye", 3rd Brazil MRS Meeting, Symposium A, October 10-13, (2004).
[4] Ameen, M. A. and Arif, G. K. "Structural and spectroscopic study of Ho3+
-doped nanotitania host
prepared using a sol–gel technique". Luminescence, Vol. (35), pp. 1109– 1117 (2020).
[5] Gupta, K.K., Jassal, M. and Agrawal, A.K. "Sol-gel derived titanium dioxide finishing of cotton fabric for
self cleaning", Indian Journal of Fibre and Textile Research, Vol. (33), pp. 443–450 (2008).
[6] Zarzycki, J., Prassas, M. and Phalippou, J. " Synthesis of glasses from gels: the problem of monolithic gels",
Journal of Materials Science, Vol. (17), pp. 3371–3379 (1982).
[7] Brinker, C. J. and Scherer, G. W. “Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing”,
San Diego, Academic Press, Inc., (1990).
[8] Dislich, H. “Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes”,
Ed. L. C. Klein, New Jersey, Noyes Publications, pp. 50. (1988).
[9] Livage, J., Babonneau, F. and Sanchez, C. “sol-gel chemistry for optical material, in Sol-Gel Optics
Processing and Applications”, Ed. L. C. Klein, New York, Springer Science and Business Media, LLC,
pp. 39. (1994).
[10] Palomino-Merino, R., Torres-Kauffman, J., Lozada-Morales, R., Portillo-Moreno, O., Garcia-Rocha, M.
and Zelaya-Angel, O. "Photoluminescence of Rhodamine 6G-doped amorphous TiO2 thin films grown by
sol–gel", Vacuum, Vol. (81), pp. 1480–1483 (2007).
[11] Nahak, B. K., Subudhi, T. S. K., Pradhan, L. K., Panigrahi, A., Roshan, R., Mahato, S. S. and Mahata, S.
" An Investigation on Photocatalytic Dye Degradation of Rhodamine 6G Dye with Fe- and Ag-Doped TiO2
Thin Films", Proceedings of the Fourth International Conference on Microelectronics, Computing and
Communication Systems (MCCS 2019), pp. 295-307 (2019).
[12] Chrysicopoulou, P., Davazoglou, D., Trapalis, Chr. and Kordas G. "Optical properties of very thin (<100
nm) sol–gel TiO2 films", Thin Solid Films, Vol. (323), pp. 188–193 (1998).
[13] Su, C., Hong, B.-Y. and Tseng, C.-M. "Sol–gel preparation and photocatalysis of titanium dioxide",
Catalysis Today, Vol. (96), pp. 119–126 (2004).
[14] Lange, R. W. and Sowman, H. G. "Shaped and Fired Articles of TiO2". U.S. Pat. No. 4 166 147, (1979).
[15] Burns, A., Hayes, G., Li, W., Hirvonen, J., Demaree, J. D. and Shah, S. I. "Neodymium ion dopant effects
on the phase transformation in sol–gel derived titania nanostructures", Materials Science and
Engineering: B, Vol. (111), Issues 2–3, pp. 150-155 (2004).
[16] Sanchez C. and Ribot, F. "Design of hybrid organic-inorganic materials synthesized via sol-gel
chemistry", New Journal of Chemistry, Vol. (18), pp. 1007-1047 (1994).
[17] Tomas, S. A., Stolik, S., Palomino, R., Lozada, R., Persson, C., Ahuja, R., Pepe, I. and da Silva, A. F.
"Optical properties of rhodamine 6G-doped TiO2 sol-gel films", Journal de Physique IV France, Vol.
(125), pp. 415-417 (2005).
JZS-A Volume 24, Issue 1, June 2022
125
[18] Wang, X., Wu, G., Zhou, B. and Shen, J. "Optical Constants of Crystallized TiO2 Coatings Prepared by
Sol-Gel Process", Materials, Vol. (6), pp. 2819-2830 (2013).
[19] Park, Y. R. and Kim, K. J. "Structural and optical properties of rutile and anatase TiO2 thin films: Effects
of Co doping", Thin Solid Films, Vol. (484), pp. 34– 38 (2005).
[20] Reisfeld, R., Brusilovsky, D., Eyal, M., Miron, E., Burstein, Z. and Ivri, J. "A new solid-state tunable
laser in the visible", Chemical Physics Letters, Vol. (160), No. 1, pp. 43-44 (1989).
[21] Arbeloa, F. L., Gonzalez, I. L., Ojeda, P. R. and Arbeloa, I. L. "Aggregate Formation of Rhodamine
6G in Aqueous Solution", Journal of the Chemical Society, Faraday Transactions 2, Vol. (78), pp. 989-994
(1982).
[22] On, C., Tanyi, E. K., Harrison, E., and Noginov, M. A. "Effect of molecular concentration on
spectroscopic properties of poly(methylmethacrylate) thin films doped with rhodamine 6G dye", Optical
Materials Express, Vol. (7), No. 12, pp. 4286-4295 (2017).
[23] Jensen, L. and Schatz, G. C. "Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time.Dependent Density Functional Theory", Journal of Physical Chemistry A, Vol. (110), No. 18, pp. 5973-
5977 (2006).
[24] Sugiarto, I. T., Isnaeni and Putri, K. Y. "Analysis of dual peak emission from Rhodamine 6G organic dyes
using photoluminescence", Journal of Physics: Conference Series, Vol. (817), pp. 012047-1-012047-6
(2017).
[25] Vogel, R., Meredith, P., Harvey, M.D. and Rubinsztein-Dunlop, H. "Absorption and fluorescence
spectroscopy of rhodamine 6G in titanium dioxide nanocomposites", Spectrochimica Acta Part A, Vol.
(60), pp. 245–249 (2004).
[26] Bartl, M. H., Boettcher, S. W., Hu, E. L., and Stucky, G. D. "Dye-activated hybrid organic/inorganic
mesostructured titania waveguides", Journal of American Chemical Society, Vol. (126), pp. 10826-10827
(2004).
[27] Grabis, J., Karashanova, D., Filkova, D., Garlanov, D. and Vissokov, G. “Synthesis and Characterization
of Nanosized Composite Material Consisting of Ferromagnetic Core and Insulating Shell, in Nanoscience
& Nanotechnology, Issue 12”, Eds. Balabanova, E. and Mileva, E., Bulgaria, BAS and NCCNT, pp. 19-
22 (2012).
[28] Venkateswarlu, P., George, M. C., Rao, Y. V., Jagannath, H., Chakrapani, G. and Miahnahri, A.
"Transient excited singlet state absorption in Rhodamine 6G", Pramana - J Phys, Vol. (28), No. 1, pp. 59–
71 (1987).
[29] Chen, X. and Mao, S.S. "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and
Applications", Chemical Reviews, Vol. (107), No. 7, pp. 2891–2959 (2007).
[30] Innocenzi, P., Kozuka, H. and Yoko, T. "Dimer-to-monomer transformation of rhodamine 6G in sol—gel
silica films", Journal of Non-Crystalline Solids, Vol. (201), pp. 26-36 (1996).
[31] Kasha, M., Rawls, H. R. and Ashraf El-Bayoumi, M. "The exciton model in molecular spectroscopy”,
Pure and Applied Chemistry, Vol. (11), No. 3-4, pp. 371-392 (1965).
[32] Valencia, S., Marín, J. M. and Restrepo, G. "Study of the Bandgap of Synthesized Titanium Dioxide
Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment", The Open Materials Science
Journal, Vol. (4), pp. 9-14 (2009).
[33] Gonçalves, M. C., Pereira, J. C., Matos, J. C. and Vasconcelos, H. C. "Photonic Band Gap and Bactericide
Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO2 ", Molecules, Vol. (23),
pp. 1677–1696 (2018).
[34] Li, F.B. and Li, X.Z. "The enhancement of photodegradation efficiency using Pt–TiO2 catalyst",
Chemosphere, Vol. (48), pp. 1103–1111 (2002).
[35] Zehentbauer, F.M., Moretto, C., Stephen, R., Thevar, T., Gilchrist, J.R., Pokrajac, D., Richard, K.L. and
Kiefer, J. "Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects",
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. (121), pp. 147–151 (2014).
JZS-A Volume 24, Issue 1, June 2022
126
[36] Gao, Y., Masuda, Y., Peng, Z., Yonezawa, T. and Koumoto, K. "Room temperature deposition of a TiO2
thin film from aqueous peroxotitanate solution", Journal of Materials Chemistry, Vol. (13), pp. 608–613
(2003).
[37] Sildos, I., Suisalu, A., Aarik, T., Sekiya, J. and Kurita, S. "Self-trapped exciton emission in crystalline
anatase", Journal of Luminescence, Vol. (87-89), pp. 290-292 (2009).
[38] Abdullah, S. A., Sahdan, M. Z., Nafarizal, N., Saim, H., Bakri, A. S., Cik Rohaida, C. H., Adriyanto, F.
and Sari, Y. "Photoluminescence study of trap-state defect on TiO2 thin films at different substrate
temperature via RF magnetron sputtering", Journal of Physics: Conference Series, Vol. (995), pp. 012067-
1-012067-9 (2018).
[39] Yu, J. C., Yu, J., Ho, W., Jiang, Z. and Zhang, L. "Effects of F- Doping on the Photocatalytic Activity and
Microstructures of Nanocrystalline TiO2 Powders", Chemistry of Materials, Vol. (14), pp. 3808-3816
(2002).
[40] Deb, S. K. "Photoconductivity and photoluminescence in amorphous titanium dioxide", Solid State
Communications, Vol. (11), pp. 713-715 (1972)