Impurity effects on the Lattice Thermal Conductivity in the Ternary GuG2P3 Semiconductor


Mustafa Saeed Omer

College of Science, Salahaddin University




Abstract
The callaway model is used to calculate lattice thermal conductivity for the doped CuGe2Pr
semiconductor between 1 and 300K. Generally, the effects of doping with S, Se, Zn, are increase this
phenomena exoept for that af Ln-Zt:t doped which is reduces thermal conductivity from that of the
undoped samples. The lughest values of r( is found for the 7-n-doped sample to be 0.57Wcm.K while the
lowest is found far I*Zn doped to be 0.15 Wcm.K. The effects of the impurity concentrations N at K**
is changes according to N0'622 and the r(,* for all concentrations does not affected by the temperature.
Results are analysed according to; first, the Rayleih scattering process with the longe wave length
effect as well as the resonance scattering process and, second is the dependence on the chemical
formation of the compound.

Key Words : lattice thermal conductivity, Semieonductors, CuGe2P3, Ternary
compounds.



References

[1] Hailing TV, saunders, G.A., omar, M.5., Pamplin, B.R. Phys. Chern. Solids. (1984), 43(2)163.
[2] Omar, M.S. Ph.D thesis, Bath university, England 1985.
[3]Garyunova, N.A., The Chemistry of Dairnond-like semiconduetors, Chapman and Ha1 Ltd, London, England 1965.
[4]Gorywnovs, N.A and Sakolova, v.I, trzA. Moldav. Filiala AN, sss R, 1960,3 (69), 31.
[5]Omar M.S. Chaines J. of synthetic crystals, 1988, 17(2)118"
[6]Hailing, Tu., saunders, G.A., omar, M.S. and Pamplin, B.R, Phys. chem. solids, 1984,43{2\ 163.
[7]Amar, M.S, Matt. Res. Bui., 7990,25,6.
[8]Bhikshamiah. G., Subrah manya sarma, Y.A., Suryanarayana ,5.Y., and Omar, M.S., J. Less-Common metals, 1985, 113 L5.
[9] Bhilrshamaiaie, G., Suryanara.yana S"V, and Omar M.,S., J. Matt" Sci. Lett., 1986 5,121.
[10] Neumann,H., Nowak,E., and Omar,M.S., Cry.Res.Teehnol., 7987 22"11,1437 '
[11] Omar, M"S. Atneen, M.M-, Murad, 1"M., and Hanna M.H, Sci.J. of Salahaddin Uni., 1988,1(1) 5s.
[12] Neumann, H., Sharif, N. Riede, V., Omar, M.S, and Sobotta, H., Cryst. Res. Technol.,1989,24,3,317.
[13] Omar, M.S., Sci. J. of Dohok university, accepted for publication 2002.
[14] Pamplin, B.R. and Omar, M.S.,Prog.Crys. Growth and Char', 1985,10,183'
[15] Tien, C.L. arlld Chen, G. T.,Heat Transfere. i992,116,799.
[16] Alexander, B. andKang, L.W,Phys. Rev.B, 1998,58, 3,1544-
[17] Mahan, G., Salas,8., and Sharp,J., Phys. Today' 1997,5A(\,42-
[18] Watker,C.T., and Pohl, R.O., Phys. Rev., 7963,137,4,1433.
[19] Maycock, P.D., Solid-state electron, 1967 , 10, 16.
[20] Alexander, 8., Phys. Low-Dim. Structures., 2000, 1 2,1.
[21] Callaway,l, Phys. Rev. 1959, 113,4,1046.
[22] Suburo Endo, and Taiztt lrie, J .Phys. Chem of Solids, I97 6, 37 , 201 .
[23] Glenn,8.M., andlutiles, ZK., Phys. Rev. 1969,179(3)722.
[24] Slack, G,.4., Phys. Rev. 1962, 126,427.
[25] Klemens, P.G.. Proc. Phys. Soc. 1955, A68. 1 113.
[26] Saburo Endo, J.Phys. Soc. Japan, 1977,43$) 132.
[27] Neumann, H., Nowak, E.. Omrtr, M"5., and Pannplin,8..R., J. less-common met. (1987), 132. Ll3.
[28] Casimir, H.8., Physica, 1938, 5(6) 495.
[29] Baumann, F.C., and Pohl, R.O., Phys. Rev. 1967, 163( 3)843.
[30] Herpin, A., Nnn, Phys. (Paris), {1952),7 ,91.
[31] Hamilton, R.A.H., and Parott, -r.8., Phys. Rev. 1969, 178( 3) i284.
[32] Paul Erdos,Phys. Rev., 1965, 138, 4A,1204.
[33] Slack, G.,4., Phys. Rev., 1962, 134, Ai238.
[34] Slack, G.A.,andGrslginai.tis,,S., Phys.Rev.,1964 ( 133) A253.
[35] Omar,lv[.S., Aziz,A.K, Saeed, M. A. andAhffisd,l{.tuf.,1. Math. Phys. (1989), 1111139.
[36] Omar, M.S,. Arab Gulf. J. Scient, Res. 1997,15(2),353.