Finite Element Analysis of Reinforced Concrete Deep Beams

Authors

  • Muhammed M. Ahmed College of Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq. Author
  • Sarkawt A. Hasan College of Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10065

Keywords:

Element Analysis, Reinforced Concrete Deep Beams

Abstract

The nonlinear analysis of reinforced concrete deep beams using finite element method is presented here. The nonlinearity included the nonlinear behavior, anisotropy under biaxial state of stress, cracking and crushing of concrete. The post cracking shear transfer in concrete by aggregate interlock and yielding of reinforcement are also considered in the analysis.
A quadrilateral eight-noded isoparametric elements were used to represent the steel.
Validity of the proposed model was checked by analysis of three reinforced concrete deep beams. The results showed good agreement with experimental ones. Deep beams with openings of different sizes and locations were also analyzed. The results showed that proposed model can represent effects of the openings on behavior of deep beams including ultimate load capacity, crack propagation, stress and strain 4.

References

Hasan S. ,Finite Element. . na ysis cf. reinforcedConcrete Deep beams). M. Sc. Thesis. . 'September 1994, University or Salabaddii L. Arbil-lraq.

AC1 Committee 318. (Building Code Rec,uirement for Reinforced Concreie) (AC1318-83) AC 1.. Detroit

Ngo, D. and Scordelis, C. (Finite Element Analysis or Reinforced CoBeams). ACI Jour., licrete Proc. Sep. 1968, 64(9), 757-766.

Nilson, ASH. (Nonlinear Analysis or Reinforced Concrete by Finite Element Method). AO Jour., Proc., Sep. 1968. 65(9) 757-766. DOI: https://doi.org/10.14359/7510

Valliappan. S.. and Donlan. T.F.. (Nonlinear Stress Analysis of ReinfOrced Concrete). ASCII Proc.. Jour. of the Struct. Div.. April 1972, 98(4), 885-897. DOI: https://doi.org/10.1061/JSDEAG.0003204

Robins. P.J. and Kong. F. K. (Modified Finite. Element Method Applied to Reinforced Concrete Deep beams). Civ. Eng.. and pub. works Rey., Nov. 1973, 68(808) 963-966.

Suidan, M. and Sehnobrich. W.C.,(Finite Element Analysis of Reinforced Concrete). ASCE Proc., Jour. of the Strut. Div,. Vol. 9, No TI.0, Oct 1973. pp. 2109-2122, DOI: https://doi.org/10.1061/JSDEAG.0003623

Kong, FiK Robins. Pi.. and Cole. D.F.. (Web Reinforced Effects on Deep Beams). AC1Jour.„, Proc„ Vol. 67, No. 12.. Dec. 1970. pp 1010-1017_ DOI: https://doi.org/10.14359/7336

Phillips. D.V, and Zienkiewitz. 0.C... (Finite Element Non-linear Analysis ofConcrete structures). Prot` .of ICE. part 2.. March 1976, 61,59-88. DOI: https://doi.org/10.1680/iicep.1976.3503

Cope, R.J. and Rao. P.. (Nonlinear Finite Element Analysis of Reinforced Concrete Slab Structures). Proc. of Ki 5, part 2. March l 977, 63, 159-119.

Cedolin. L., and Die Poll. S. (Finite Element Studies of Shear-critical wit Beams). ASCE. Proc.. Jour. of En g. Mech. Div., March 1977 ,103. No. Em3, 395-410. DOI: https://doi.org/10.1061/JMCEA3.0002236

Gogate. A.B., and Bishara, A.G.. (Finite Element Analysis of Deep Beams). Indian Concrete Journal. Dec . 1980,54(12%326-333.

Mahmood, M.N, (Nonlinear Finite Element Analysis of Reinforced Concrete Deep Beams), M. Sc. Thesis. aunt 1986. University of Mosul. 14. Kotsovos, Ka, (Behavior or Reinforced Concrete Hems with a Shear span, to Depth Ratio tween 1. and 25), AC "Jour. Pr 's, May-June 1994, 81(3), 279-286.

Kupfer, H.. Hildsdorf, HI. and Rusch, IL (Behavior of Concrete Under Biaxial Stresses). ACT Jour.. Proc. August 1969, 66(8) 656-666. DOI: https://doi.org/10.14359/7388

Kupfer. FL. and Grestie, K.H., (Behavior or Concrete Under Biaxial stresses). asISCE, Jour. of Eng. Mech. Div., Aug, 1973, EM4, 852866. DOI: https://doi.org/10.2172/4949861

Liu. T.C.Y, Nilson, LH,. and Slate. F. O, (stress-Strain Response and Fracture or Concrete in Uniaxial and Biaxial Compression), ACI Jour., Proc.. May 1972, 69(5), 291-295. DOI: https://doi.org/10.14359/7148

I 8. Liu, T.C.Y. i lson,A, H. and Slate, F.0, (Biaxial Stress-strain Rotations for Concrete), ASCE. Proc.. Jour. of the Struct Ditt,_ May 1972, 98: No STS.. 1025-1034. DOI: https://doi.org/10.1061/JSDEAG.0003222

Tasuji, M,E. i I sonsAil-H. and Slate, F. O., (Stress-Strain Response And Fracture or Concrete in Biaxial Loading). Act four, Proc.. July 2978, 75(7), 306-312,

Tasuji. M.E. Nilson, A-11., and Slate. F.O., (Biaxial Stress-strain Relationships for Concrete), Mag. of Concrete Research. Dec. 1979.3 I( 109) 218:224: DOI: https://doi.org/10.1680/macr.1979.31.109.217

Huebner.. K. H, and Thonton, E. ..(Thee Finite Element Method for Engineers), and Edition, John Wiley & sons, Inc., lnc.. New York. 1982_ 22. Ziankiewicz. 0.C, (The Finite Element Method in Engineering Science). TH3 Edition. McGraw-Hill. London, 1971.

Cook,. RD., (Concepts and Application of Finite Element Analysis), 2nd Edition. John Wiley Son's., Inc.. New York. 1981,

Cheung, Y.K.. and Ye o. M.P... (A practical Introduction to Finite Element Analysis), Pitman Publishing Ltd, Great Britain, 1979.

Dodds. R.H. Damen. D., and Leibengood, La. (Stress Controlled Smeared Cracking in C Beams). Axe. Proc., Jour. or Struct Div.. Sep_ 1984, 110( 9),1959-1979. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(1959)

Bedard,. C., and Kotsovos, M. D., (Application of NLFEA to Concrete Structures), ASCE. Noe.. Jour. of Struct Div.. Dec 1985, 11E12) 2691-2705. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2691)

Kotsovos. M.D., (Behavior of Reinforced Concrete Beams with a Shear span to Depth Ratio Between 2_5 and 5). ACHour., Frac...Novi-Dec. 1986, 83(3) 1026-Ioa4.

Published

2000-09-05

Issue

Section

Articles

How to Cite

Finite Element Analysis of Reinforced Concrete Deep Beams. (2000). Journal of Zankoy Sulaimani - Part A, 4(1), 51 – 68. https://doi.org/10.17656/jzs.10065

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>