On Centrally Regular Modules and Centrally Semiregular Modules

Authors

  • Adil Kadir Jabbar College of Science, University of Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10198

Keywords:

Regular modules, Semiregular modules, Small modules, Centrally regular modules, Centrally semiregular modules

Abstract

In this paper, two new modules are defined, which we call centrally regular and centrally semiregular modules and several properties of them are proved. Also, we have determined so many conditions under which regular (resp. semiregular) modules and centrally regular (resp. centrally semiregular) modules are equivalent.

References

Larsen M. D. and McCarthy P. J.: Multiplicative Theory of Ideals, 1971 Academic Press New York and London.

Jabbar A. K.: Centrally prime rings which arecommutative, Journal of Kirk University, 2006, 1( 2), 108-124. DOI: https://doi.org/10.32894/kujss.2006.44239

Blyth T. S. : Module Theory, 1990,Clarendon Press. Oxford.

Kamal M. A. and Yousef A. : On Principally Lifting Modules, International Electronic Journal of Algebra, 2007, 2, 127-137.

Wang Y. and Sun Q. : A Note on cofinitely supplemented modules, International Journal of Mathematics and Mathematical Sciences, 2007, ID, 1-5. DOI: https://doi.org/10.1155/2007/10836

Zeng Q. Y. and Shi M. H. : On closed weak supplemented modules, Journal of Zhejiang University Science A, 2006, 7(2), 210-215. DOI: https://doi.org/10.1631/jzus.2006.A0210

Alkan M. and Ozcan A. C. : Semiregular modules with respect to a fully invariant submodules, Communications in Algebra, 2004, 32, ( 11), 4285-4301. DOI: https://doi.org/10.1081/AGB-200034143

Nebiyev C. and Pancar A. : Strongly Supplemented Modules, International Journal of Computational Cognition, 2004, 2( 3), 57-61.

Tuganbaev A. A. : Rings of Quotients and Pierce Stalks, Journal of Mathematical Sciences, 2002, 109 ( 3), 1569-1583.

Wisbauer R. : Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.

Published

2009-06-06

How to Cite

On Centrally Regular Modules and Centrally Semiregular Modules. (2009). Journal of Zankoy Sulaimani - Part A, 12(1), 85-96. https://doi.org/10.17656/jzs.10198

Most read articles by the same author(s)