Structural Study of SrTiO3 Single Crystal using High Resolution X-ray Diffraction

Authors

  • Aziz Muhemed Abdullah Faculty of Education, Chamchamal, Universirty of Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10278

Keywords:

High resolution x-ray diffraction, Rocking curve, FWHM, Dislocation density

Abstract

Strontium titanate, SrTiO3 is one of the perovskite – type crystal that commonly used as a substrate for epitaxial growth of multifunctional oxide films and well-defined TiO2-terminated surface is crucial for the fabrication of oxide hetero-interfaces. Structural properties have a strong effect on thin films characteristics and their applications. Proceeding from this fact, the lattice defects of as-grown or as-annealed SrTiO3 single crystals with a nondestructive technique have been investigated. The structural imperfection and dislocation density (screw and edge types) of STO single crystals with 10x10x1 mm dimension (from crysTec GmbH- Berlin) have been studied using omega scan from high-resolution x-ray diffraction technique, as well as, the symmetric (002) and the skew-symmetric (101) rocking curves (which are sensitive to the structural perfection) also reported. In order to prove the sample quality, the experimental full widths at half maximum (FWHM) of the X-ray rocking curves have been shown. From the FWHMs, the dislocation density (screw and edge types) and the total dislocation density have been calculated.

References

-J. B. Goodenough, Rep. Prog. Phys., 67, 1915 (2004). DOI: https://doi.org/10.1088/0034-4885/67/11/R01

-K. A. Muller, W. Berlinger, and F. Waldner. Phys. Rev. Lett., 21, 814 (1968). DOI: https://doi.org/10.1103/PhysRevLett.21.814

-Mats Johnsson and Peter Lemmens, J. Phys.: Condens. Matter (2008).

-N. Erdman, L. D. Marks, Surface Science 526, (107–114) (2003). DOI: https://doi.org/10.1016/S0039-6028(02)02573-6

-J. Schlappa, C. F. Chang, Z. Hu, E. Schierle, H. Ott, E. Weschke, G. Kaindl, M. Huijben, G. Rijnders, D. H. A. Blank, L. H. Tjen and C. Sch¨ußler-Langeheine, J. Phys.: Condens. Matter 24 (2012). DOI: https://doi.org/10.1088/0953-8984/24/3/035501

-P.A.W. van der Heide, Q.D. Jiang, Y.S. Kim, J.W. Rabalais, X-ray photoelectron spectroscopic and ion scattering study of the SrTiO3 (001) surface, Surface Science, 473(1– 2), 59–70 (2001). DOI: https://doi.org/10.1016/S0039-6028(00)00954-7

-J. Yamanaka, MATER T JIM, 40 (9), 915-918 (1999). DOI: https://doi.org/10.2320/matertrans1989.40.915

-Mitsuo Yoshiikawa, J. Appl. Phys., 63 (5), 1533-540 (1988).

-A. Dejneka, M. Tyunina, J. Narkilahti, J. Levosk, D. Chvostova, L. Jastrabik, V. A. Trepakov Tensile strain induced changes in the optical spectra of SrTiO3 epitaxial thin films, Physics of the Solid State., 52(10), 2082-2089, (2010). DOI: https://doi.org/10.1134/S1063783410100124

-S. Zollner, A.A. Demkov, R. Liu, P. L. Fejes, R.B. Gregory, J.A. Curless, Z. Yu, J. Ramdani, R. Droopad, T.E. Tiwald, J.N. Hilfiker, J.A.J. Woollam, Vac. Sci. Technol. B, 18 (4), 2242 (2000) DOI: https://doi.org/10.1116/1.1303741

- S. Singh, TeYu Chien, J. R. Guest, and M. R. Fitzsimmons, Phys. Rev. B 85, 115450 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.115450

-A. Stashansy, F. Erazo, J. Ortiz and P. Valverde, Philosophical Magazine B, 81 (12) (2001). [13] Peter W. Norton and Anthony P. Erwin, J. Vac. Sci. Technol. , A7 (4), 503-508 (1989).

-J. G. Bednorz and K. A. Muller, Phys. Rev. Lett. 52, 2289 (1984).

-M.D. Biegalski, D.D. Fong, J.A. Eastman, P.H. Fuoss, S.K. Streiffer, T. Heeg, J. Schubert, Journal of Applied Physics 104, 114109 (2008). DOI: https://doi.org/10.1063/1.3037216

-H. Adachi. K. Setsune and K. Wasa: Phys. Rev. B. 35, 8824-8825 (1987).

-H. Hasegawa, T. Fukazawa and T. Aida: Jpn. J. Appl. Phys, 28, L2210- L2212 (1989). DOI: https://doi.org/10.1143/JJAP.28.L2210

-M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma: Science, 266, 1540- 1542 (1994). DOI: https://doi.org/10.1126/science.266.5190.1540

-V. Srikant, J. S. Speck, and D. R. Clarke, J. Appl. Phys. 82, 4286 (1997). [20] Krishan Lal, Pinsa 68A(3), 315-331 (2002).

-A. Torabi, S.K. Brierley, P.S. Lyman, W.E. Quinn, W.E. Hoke, JCPDS-International Centre for Diffraction Data, Advances in X- - ray Analysis, 42 (2000).

-Marcelo Assaoka Hayashi, Rogério Marcon, Revista Physicae 1, CP6165, 13083-970, 20-27 (2000).

-Hans J Scheel, Journal of Crystal Growth 211(1-4), 1-12, (2000). DOI: https://doi.org/10.1016/S0022-0248(99)00780-0

-M. Yoshimoto, T. Maeda, K. Shimozono, H. Koinuma, M. Shinohara, O. Ishiyama, F. Ohtani, Appl. Phys. Lett. 65, 3197, 64 (1994). DOI: https://doi.org/10.1063/1.112988

-G. Koster, B. Kropman, G. Rijnders, D. Blank, H. Rogalla: Appl. Phys. Lett. 73, 2920, 64- 67 (1998). DOI: https://doi.org/10.1063/1.122630

-The rocking curves are measured by keeping a constant angle between the source and the detector ~equal to twice the Bragg angle for the diffracting planes! and then rocking the substrate about the surface normal.

-Walter Schottky Institut- Zentralinstitut der Technischen Universität München, High Resolution X-Ray Diffraction, (2009).

-James R. Connolly, for EPS400-002, Introduction to X-Ray Powder Diffraction, Spring (2003).

-G. Darwin (Phil. Mag. 27, 315-333, 675-690 (1914) Phil. Mag. 43, 800-829, (1922). DOI: https://doi.org/10.1080/14786442208633940

-P. D. Healey, B. Bao, M. Gokhale, J. E. Ayers and F. C. Jain, Acta. Cryst. , A51, pp. 498503, (1995). DOI: https://doi.org/10.1107/S0108767394014303

-P. Gay, P. B. Hirsch and A. Kelly, Acta. Metallurgica, 1, pp. 315-319 (1953). DOI: https://doi.org/10.1016/0001-6160(53)90106-0

-C. G. Dunn and E. F. Koch, Acta. Metallurgica, 5, pp. 548-553 (1957). [33] J. E. Ayers, Journal of Crystal Growth, 135, pp. 71- 77 (1994). DOI: https://doi.org/10.1016/0022-0248(94)90727-7

-Wang Qingxue, Yang Jianrong, Wei Yanfeng, Fang Weizheng and He Li, Research Center for Advanced Materials and Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China).

-M. Lorenz, M. Brandt, G. Wagner, H. Hochmuth, G. Zimmermann, H. von Wenckstern, and M. Grundmann, 7217:72170N (2009).

-V. Srikant, J. J. Speck, D. R. Clarke, J. Appl. Phys. 82 (1997). DOI: https://doi.org/10.1063/1.366235

-K. Kang and Wei Cai, "Brittle and Ductile Fracture of Semiconductor Nanowires – Molecular Dynamics Simulations", Philosophical Magazine, 87, 2169 (2007). DOI: https://doi.org/10.1080/14786430701222739

-Takayuki Konya, The Rigaku journal 25 (2), 1-8 (2009).

-J. W. Park, S. H. Baek, C. W. Bark, M. D. Biegalski, and C. B. Eom, “Quasi-Single-Crystal (001) SrTiO3 Templates on Si”, Applied Physics Letters 95(6), 061902, (2009). DOI: https://doi.org/10.1063/1.3202398

-D. H. A. Blank, A. J. H. M. Rijnders, H. Schönherr ir. J. J. Broekmaat ir. D. B. Bijl, Nucleation and growth on SrTiO3 substrates characterize by ex-situ AFM (s0001465) (2007).

Published

2013-09-04

How to Cite

Structural Study of SrTiO3 Single Crystal using High Resolution X-ray Diffraction. (2013). Journal of Zankoy Sulaimani - Part A, 15(4), 91-96. https://doi.org/10.17656/jzs.10278