Dielectric Properties of Barium Zirconate Titanate Ceramics Prepared using Hydrothermal Method


  • Mukhlis M. Ismail University of Technology, Applied Science Department, Kurdistan Region, Iraq. Author




Hydrothermal method, Dielectric constant, BT & BZT


Barium titanate (BT) with different content of Zr (0.001 and 0.008) is prepared using hydrothermal method at 150oC for 2h. It is found that with increased of Zr content, the lattice constant a increases while the lattice constant c decreases. It is observed also that the curie temperature peak shift to lower temperature and be broadened. The lattice constants have the same value at Zr content equal to 0.027. For BT samples sintered at 1000oC, the dielectric constant below Curie temperature is about 2000 and becomes 6000 at Curie temperature. With the increased of sintered temperature (1200oC), the dielectric constant is about 4000 and becomes 9600 at Curie temperature (Tc). At Curie temperature the dispersion in BZT1 (x=0.001) is distinct than that of pure BT. At near T1 (temperature at phase transition from tetragonal to orthorhombic) the little broadening is observed of BZT1 in comparing with BT. The dispersion of BZT2 (x=0.008) is more distinct than that of BZT1 (x=0.001) and BT. After adding gradual increasing of Zr, both T1 (tetragonal to orthorhombic phase transition) and Tc are shifting to each other.


Pfaff G., J. Mater. Chem., 2(6), pp. 591-594, (1992). DOI: https://doi.org/10.1039/JM9920200591

Ismail M. M., Ali S. M., Ahmed Z. S., and Cao W. Q., Proceeding of the first scientific conference on

nanotechnology, advanced material and their application 2009.

Gijp S. V., Winnubst L. and Verweij H., J. Mater. Chem., 8(5), pp. 1251-1254, (1998). DOI: https://doi.org/10.1039/a801466c

Bera J., and Savkar D., J. Electroceram., 11(3), pp. 131-137, (2003). DOI: https://doi.org/10.1023/B:JECR.0000026366.17280.0d

Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G. and Han G., Mater. Lett., 63(2), pp.

-241, (2009).

An C., Liu C., Wang S. and Liu Y Mater. Res. Bull., 43(4), pp. 932-938, (2008). DOI: https://doi.org/10.1016/j.materresbull.2007.04.034

Al-Sarraj Z. S. A., Ismail M. M., Ali S. M., and Cao W. Q., Adv. Mater. Res. 324, pp 205-208, (2011). DOI: https://doi.org/10.4028/www.scientific.net/AMR.324.205

Lee B. W. and Cho S. B., J. Electroceramics, 13(1-3), pp. 379-384, (2004). DOI: https://doi.org/10.1007/s10832-004-5129-4

Wu M., Xu R., Feng S. H., Li L., Chen D., and Luo Y. J., J. Mater. Sci., 31(23), pp. 6201-6205, (1996). DOI: https://doi.org/10.1007/BF00354439

Sun W., and Li JMater. Lett. 60(13-14), pp.1599-1602, (2006). DOI: https://doi.org/10.1016/j.matlet.2005.11.078

Habib A., Haubner R., and Stelzer N., Mater. Sci. Eng. B, 152(1-3), pp. 60-65, (2008). DOI: https://doi.org/10.1016/j.mseb.2008.06.018

Lu S. W., Lee B. I., Wang Z. L., and Samuels W. D J. Cryst. Growth, 219(3), pp. 269-276, (2000). DOI: https://doi.org/10.1016/S0022-0248(00)00619-9

Zhu X., Zhu J., Zhou S., Liu Z., Ming N., and Hesse D., J. Cryst. Growth, 283(4), pp. 553-562, (2005). DOI: https://doi.org/10.1016/j.jcrysgro.2005.05.080

Dutta P. K., and Gergg J. R., Chem. Mater., 4(4), pp. 843-846, (1992). DOI: https://doi.org/10.1021/cm00022a019

Vivekanandan R., Philip S., and Kutty T. R. N., Mat. Res. Bull., 22(1), pp. 99-108, (1987). DOI: https://doi.org/10.1016/0025-5408(87)90156-5

Lee J. H., Nersisyan H. H., Lee H.H. and Won C. W., J. Mater. Sci., 39(4), pp. 1397-1401, (2004). DOI: https://doi.org/10.1023/B:JMSC.0000013903.88605.a4

Moura F., Simoes A. Z., Stojanovic B. D., Zagheta M. A., Longo E., and Varela J. A., J. Alloys

compound, 462(1-2), pp. 129-134, (2008).

Hino T., Nishida M., Araki T., Ohno T., Kawahara T., Murasugi M., Tabata H., and Kawai T., JLMN-

Journal of Laser Micro/Nanoengineering 2(3), pp. 166-169, (2007). DOI: https://doi.org/10.2961/jlmn.2007.03.0001

Cao W. Q., Li F. L., Ismail M. M., and Xiong G., Jpn. J. Appl. Phys. 51(), pp. 041503-4, (2012). DOI: https://doi.org/10.1143/JJAP.51.041503

Ravez J. and Simon A., Solid State Sci. 2(5), pp. 525-529, (2000). DOI: https://doi.org/10.1016/S1293-2558(00)01066-9

Marques L.G.A., Cavalcante L.S., Simo ̃es A.Z., Pontes F.M., Santos-Ju ́nior L.S., Santos M.R.M.C.,

Rosa I.L.V., Varela J.A., and Longo E., Mat. Chem. Phys. 105(2-3), pp.293–297, (2007). DOI: https://doi.org/10.1016/j.matchemphys.2007.04.065

Moura F., Simo ̃es A.Z., Stojanovic B.D., Zaghete M.A., Longo E., Varela J.A., Journal of Alloys and

Compounds 462, pp.129–134, (2008). DOI: https://doi.org/10.1016/j.jallcom.2007.07.077

Ismail M. M., "Crystal Structure and Morphology of Nano Ba(Zr,Ti)O3 Prepared Using Hydrothermal

Method" Ph. D Thesis (2009).

Cao W. Q., Yang L., Ismail M. M., and Feng P., Ceramic Intern. 37, 1587–1591, 2011 DOI: https://doi.org/10.1016/j.ceramint.2011.01.031



How to Cite

Dielectric Properties of Barium Zirconate Titanate Ceramics Prepared using Hydrothermal Method. (2014). Journal of Zankoy Sulaimani - Part A, 16(4), 69-74. https://doi.org/10.17656/jzs.10347

Most read articles by the same author(s)

<< < 60 61 62 63 64 65 66 67 68 69 > >>