Enhancement efficiency of P3HT:PCBM solar cell by different treatment annealing

Authors

  • Abdullah A. Hussein Polymer Research Centre, University of Basrah, Iraq. Author
  • Waleed A. Hussain College of Education, University of Basrah, Iraq. Author
  • Hussein F. Al-luaiby College of Education, University of Basrah, Iraq. Author
  • Tamara Basova Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia. Author
  • Aseel K. Hassan Materials and Engineering Research Institute, Sheffield Hallam University, UK. Author

DOI:

https://doi.org/10.17656/jzs.10370

Keywords:

Solvent vapor annealing-, Post annealing, P3HT:PCBM, Nanoparticle

Abstract

Solvent Vapor Annealing (SVA) followed by Post Thermal Annealing (SVA-PA) are demonstrated as attractive methods to anneal polymer blend films and represent a very useful process to control the morphology for high performance polymer solar cells (PSCs). It is found that compared with general annealing processes, the crystallinity of regioregular poly (3-hexylthiophene) (rr-P3HT) has enhanced by performing SVA-PA on freshly deposited films. In this work we have investigated thin film blend produced from P3HT and [6,6]-phenyl-C61 butyric acid methylester (PCBM) materials. This photoactive layer is sandwiched between an anode composed of indium tin oxide (ITO)/poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) gold nanoparticles (AuNPs)  and Al as the cathode  layer. Atomic force microscopy (AFM) study reveals that the SVA annealed films exhibit smooth surface and homogenous conductivity distribution. Moreover, an enhanced light harvesting and increased crystallinity of P3HT in the active layer are observed by UV–vis absorption and X-ray diffraction (XRD). We have seen that thermal annealing significantly improves the optical absorption ability for all treatment. We have also the current density- voltage characteristics  and External quantum efficiency (EQE) of different thermal annealing.

References

H. Lv, X. Zhao, W Xu, H. Li, J. Chen, X. Yang, Organic Electronics 14 (2013) 1874–1881 DOI: https://doi.org/10.1016/j.orgel.2013.04.022

G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat. Photonics 6 (2012) 153–161. DOI: https://doi.org/10.1038/nphoton.2012.11

He Z., Zhong C., Huang X., Wong W.-Y., Wu H., Chen L., Su S. and Cao Y., Adv. Mater. 23, (2011) 4636. DOI: https://doi.org/10.1002/adma.201103006

Zhou H., Yang L. and You W., Macromolecules 45, (2012) 607. DOI: https://doi.org/10.1021/ma201648t

Li X., Choy W. C. H., Huo L., Xie F., Sha W. E. I., Ding B., Guo X., Li Y., Hou J., You J. and Yang Y., Adv. Mater. 24, (2012) 3046. DOI: https://doi.org/10.1002/adma.201200120

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 4, (2005), 864.

M. Reyes-Reyes, K. Kim, D. L. Carroll, Appl. Phys. Lett. 87, (2005) 083 506.

G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. , 98 (2005), 043 704. DOI: https://doi.org/10.1063/1.2008386

W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. , 15 (2005) 1617.

T. Wang, A. J. Pearson, D. G. Lidzey, R. A. L. Jones, 21 (2011)1383–1390. DOI: https://doi.org/10.1002/adfm.201002300

N. D. Treat, C. G. Shuttle, M. F. Toney, C. J. Hawker, M. L. Chabinyc, Journal of Materials Chemistry,21(2011)15224–15234. DOI: https://doi.org/10.1039/c1jm12677f

Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv.Functional Mate., 18(2008) 1783–1789. DOI: https://doi.org/10.1002/adfm.200701459

B. Schmidt-Hansberg, M. Sanyal, N. Grossiord, Y. Galagan, M. Baunach, M.F.G. Klein, A. Colsmann, P. Scharfer, U. Lemmer, H. Dosch, J. Michels, E. Barrena, W. Schabel, Solar Energy Mater. .Solar Cells 96(2012)195–201. DOI: https://doi.org/10.1016/j.solmat.2011.09.059

G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv.Functional Mater.17 (2007) 1636–1644. DOI: https://doi.org/10.1002/adfm.200600624

G. Wei, S. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 1 (2011)184–187. DOI: https://doi.org/10.1002/aenm.201100045

H. Tang, G. Lu, L. Li, J. Li, Y. Wang, X. Yang, J.. Mater. Chem.20 (2010) 683–688. DOI: https://doi.org/10.1039/B917533D

T. A. Bull, L. S. C. Pingree, S. A. Jenekhe, D. S. Ginger, C. K. Luscombe, ACSNano3 (2009) 627–636. DOI: https://doi.org/10.1021/nn800878c

R. Hegde, N. Henry, B. Whittle, H.D. Zang, B. Hu, J.H. Chen, K. Xiao, M. Dadmun, Sol. Energy Mater. Sol. Cells 107 (2012) 112–124. DOI: https://doi.org/10.1016/j.solmat.2012.07.014

G. de Luca, A. Liscio, P. Maccagnani, F. Nolde, L. M. Scolaro, V. Palermo, K. M€ullen and P. Samor, Soft Matter., 4 (2008), 2064. DOI: https://doi.org/10.1039/b807391k

V. Palermo and P. Samor, Angew. Chem., Int. Ed. , 46 (2007) 4428. DOI: https://doi.org/10.1002/anie.200700416

J. M. Mativetsky, M. Kastler, R. C. Savage, D. Gentilini, M. Palma, W.Pisula, K.M€ullen , P. Samor, Adv. Funct.Mater. , 19, (2009) 2486. DOI: https://doi.org/10.1002/adfm.200900366

A. Datar, R. Oitker and L. Zang, Chem. Commun., (2006), 1649. DOI: https://doi.org/10.1039/b518060k

E. Treossi, A. Liscio, X. Feng, V. Palermo, K.M€ullen and P. Samor_ı, Small, 5(2009), 112. DOI: https://doi.org/10.1002/smll.200801002

H.-Y. Chen, J.-L. Wu, C.-T. Chen, C.-T. Chen,. 48 (2012) 1012–1014. DOI: https://doi.org/10.1039/C1CC16619K

S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, M. Chhowalla, J. Mater. Chem. 18 (2008) 306–312. DOI: https://doi.org/10.1039/B713926H

A. Amassian, V.A. Pozdin, R. Li, D.-M. Smilgies, G.G. Malliaras, J. Mater. Chem. 20 (2010) 2623–2629. DOI: https://doi.org/10.1039/b923375j

A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao and Y. Xia, Mater. Today, 11 (2008) 38. DOI: https://doi.org/10.1016/S1369-7021(08)70055-5

G. de Luca, A. Liscio, P. Maccagnani, F. Nolde, V. Palermo, K. M€ullen and P. Samor_ı, Adv. Funct. Mater., (2007), 17, 3791. DOI: https://doi.org/10.1002/adfm.200700549

M. J. Beliatis, S. J. Henley, S. Han, K. Gandhi, A. A. D. T. Adikaari,Z.E.Stratakis, E.Kymakis, S. R. P. Silva, Phys. Chem. Chem. Phys., 15, (2013) 8237 DOI: https://doi.org/10.1039/c3cp51334c

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S.H. Liou , P. H. Yeh, C. H. Yang, Thin Solid Films, 516 (2008) 3138–3142. DOI: https://doi.org/10.1016/j.tsf.2007.08.066

Y.C. Huang, Y.C. Liao, S.S. Li, M.C. Wu, C.W. Chen, W.F. Su, Solar Energy Materials and Solar Cells 93 (2009) 888–892. DOI: https://doi.org/10.1016/j.solmat.2008.10.027

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Materials 4 (2005) 864–888. DOI: https://doi.org/10.1038/nmat1500

H.Y. Park, K. Kim, D.Y. Kim, S.K. Choi, S.M. Jo, S.Y. Jang, Journal of Materials Chemistry 21 (2011) 4457–4464. DOI: https://doi.org/10.1039/c0jm03899g

M.Y. Chiu, U.S. Jeng, C.H. Su, K.S. Liang, K.H. Wei, 20 (2008) 2573–2578. DOI: https://doi.org/10.1002/adma.200703097

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Adv. Funct. Mater. 14 (2004) 1005. DOI: https://doi.org/10.1002/adfm.200305026

D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, Nanotechnology 15 (2004) 1317. DOI: https://doi.org/10.1088/0957-4484/15/9/035

X. Yang, J.K.J. van Duren, R.A.J. Janssen, M.A.J. Michels, J. Loos, Macromolecules 37 (2004) 2151. DOI: https://doi.org/10.1021/ma035620+

Ma W. L., Yang C. Y., Gong X., Lee K. and Heeger A. J., Adv. Funct. Mater. 15,1617 (2005). DOI: https://doi.org/10.1002/adfm.200500211

W.C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson, J.-S. Kim, |J. Am. Chem. Soc. 2011, 133, 9834–9843

Baibarac, M.; Lapkowski, M.; Pron, A.; Lefrant, S.; Baltog, I. J. Raman Spectrosc. 1998, 29, 825–832. [41] Gao, Y.; Gery, J. K. J. Am. Chem. Soc. 2009, 131, 9654–9662. DOI: https://doi.org/10.1002/(SICI)1097-4555(199809)29:9<825::AID-JRS309>3.0.CO;2-2

Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J. S. J. Am. Chem. Soc. 2011, 133, 9834–9843 DOI: https://doi.org/10.1021/ja2013104

G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron,M. Lapkowski, S.J. Lefrant, Phys. Chem. 100 (1996) 12532. DOI: https://doi.org/10.1021/jp960104p

Y. Xuan, Y.ming, H.yang, ZHANG Jian-jun, ZHAO Gengshen , Z. Ying. Optoelectron. Lett. 9.4 · (2013) 0275.

Hu Z., Zhang J. and Zhao Y., Org. Electron. (2012) 13, 142. DOI: https://doi.org/10.1016/j.orgel.2011.09.026

Published

2014-12-10

How to Cite

Enhancement efficiency of P3HT:PCBM solar cell by different treatment annealing. (2014). Journal of Zankoy Sulaimani - Part A, 17(1), 167-176. https://doi.org/10.17656/jzs.10370