Evaluation of the Important Properties of Liquid Crystal Elastomers (LCEs)

Authors

  • Dlzar M. Majeed College of Engineering, University of Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10374

Keywords:

Liquid crystal elastomers rubber elasticity photovoltaic solar energy crosslinking

Abstract

Liquid Crystal Elastomers (LCEs) have been the object of growing interest in recent years due to the combination of mesogenic ordering and rubber elasticity which allows them to respond to thermal stimuli by changing their shape, size and optical properties. The use of LCEs thus makes it possible to convert small quantities of external energy to mechanical energy which makes it easy to be used as energy harvesting. This paper will firstly focus on thermal and mechanical properties of LCEs it will be seen that they will be affected by elasticity of the polymer backbone and the nature of mesogenic monomer. Following this, the focus will turn to the electric field, light, and thermal energy that can be converted into mechanical energy induces thermomechanical, electromechanical and electrooptical effects by such materials. It will be observed that the shape of LCE materials can be changed through changing orientation of LC. Additionally, swollen samples can minimize threshold field by a factor of 200 compared with unswollen samples. Then, the emphasis will go to the impact of mixing nanoparticles with the LCE samples on its behaviour. This is done by increasing crosslinking agent content of the sample and then its impact is shown by the strain-stress curve which leads to reduction in the degree of nematic phase and increase in Young’s modules. The paper then gives a future direction to expand the work for instance its application in photovoltaic systems to convert solar energy into electricity.

References

Helmut R. Brand, Harald Pleiner, and Philippe Martinoty. “Selected Macroscopic Properties of Liquid Crystalline Elastomers”, Soft Matter, 182; DOI:10.1039/b512693m, (2006). DOI: https://doi.org/10.1039/b512693m

Ohm C, Brehmer M., and Zentel R. “Liquid Crystalline Elastomers as Actuators and Sensors, Advance Materials, Materials views”, DOI: 10.1002/adma.200904059, (2010).

Nathan, J.D. “Photo-induced deformations of nematic liquid crystal elastomers. Unpub”. PhD thesis, Dept. of Physics and Astronomy, University of Washington State, Pullman, United State, (2010).

Wanting R. “Structure-property relations in siloxane-based main chain liquid crystal elastomers and related linear polymers”. Unpub. PhD thesis, Dept. of Polymer Texile & Fiber Engineering, Georgia Institute of Technology, Atlanta, United State, (2007).

Warner, M. and Terentjev, E.M. “Liquid Crystal Elastomers”. Oxford; Oxford University Press, (2003). DOI: https://doi.org/10.1093/oso/9780198527671.001.0001

Philippe, M.“Mechanical properties of monodomain side chain nematic elastomers. Proceeding of The

First World Congress on Biomimetics and Artificial Muscle”, Albuquerque, 9-11 Dec., 14, 1-21, (2002).

Yusril, Y., Yukitada, O. Yusuke, S. and Shoichi, K. “Swelling behavior of liquid crystal elastomers in low molecular weight liquid crystals”. Mathematical Aspect of Complex Fluid III Proceeding, RIMS Symposium, Kyoto, Japan 139-148, (2003).

Kempe, Scruggs, Verduzco, Lal, and Fornfield. “Liquid Crystal Elastomers Mechanical Properties”. Nature Materials, vol. 2, pp. 422–431, (2004).

Donald L., Thomsen III, Keller P., Naciri J., Pink R., Jeon H., Shenoy D, and Ratna R. B. “Liquid

Crystal Elastomers with Mechanical Properties of a Muscle”, Macromolecules 200, 34, 5868 – 5878, (2001). DOI: https://doi.org/10.1021/ma001639q

Cladis, P.E. “Liquid crystal elastomers as artificial muscles”. Dynamic Control Systems Proceedings, Summit, USA, 69, pp. 1-8, (2000).

Madden, J.D.W. “Artificial muscle technology: physical principles and naval prospects”. Oceanic Engineering, IEEE Journal of 29, pp.706-728, (2004). DOI: https://doi.org/10.1109/JOE.2004.833135

Ohm, C., Brehmer, M. and Zentel, R. “Applications of liquid crystalline elastomers”, in R. Jayakumar and S. Nair, eds., Biomedical Applications of Polymeric Nanofibers, pp.10-12, (2012). DOI: https://doi.org/10.1007/12_2011_164

Min-Hui, L. and Patrick, K. “Artificial muscles based on liquid crystal elastomers”. Philosophical Transactions of The Royal Society 364, pp.2763-2777, (2006). DOI: https://doi.org/10.1098/rsta.2006.1853

Shigehiro, H. “Multifunctional liquid crystal elastomers: large electromechanical and electro-optical effects”. The American Institute of Physics 92, pp.1-3, (2008). DOI: https://doi.org/10.1063/1.2917465

Tomiki, I., Jun-ichi M. and Yanlei, Y. “Photomechanical of liquid-crystalline elastomers and other polymers”. The 21st International Liquid Crystals Conference, Keystone, vol. 46, 506-528, (2006). DOI: https://doi.org/10.1002/anie.200602372

Christian, O., Martin, B. and Rudolf, Z. “Liquid crystalline elastomers as actuators and sensors”. Advanced Materials 22, pp.3366-3387, (2010). DOI: https://doi.org/10.1002/adma.200904059

Yanlei, Y. and Tomiki, I. “Photodeformable polymers: a new kind of promising smart material for micro-and nano-applications”. Macromolecular Chemistry and Physics 206, pp.1705-1708, (2005). DOI: https://doi.org/10.1002/macp.200500318

Yanlei, Y., Taketo, M., Jun-ichi, M. and Tomiki, I. “Photomechanical effects of ferroelectic liquidcrystalline elastomers containing azobenzene chromophores”. Angewandte Chemie 119, pp.899-901, (2007). DOI: https://doi.org/10.1002/ange.200603053

Miguel, C.L., Heino, F., Peter, P.M. and Michael, S. “Fast liquid-crystal elastomer swims into the dark”. Nature materials 3, pp.307-310, (2004). DOI: https://doi.org/10.1038/nmat1118

Yanlei, Y. and Tomiki, I. “Soft actuators based on liquid-crystalline elastomers”. Angewandte Chemie 45, pp.5416-5418, (2006). DOI: https://doi.org/10.1002/anie.200601760

Tomiki, I. “Photomodulation of liquid crystal orientations for photonic applications”. Journal of Materials Feature Article 13, pp.2037-2057, (2003). DOI: https://doi.org/10.1039/b306216n

Yang, H.N., Yuki, A., Kazuyuki, H., and Hiroshi, O. “Measurement of Electrical Induced Shear Strain in Chiral Smectic Liquid Crystal Elestomer”. The 2011 International workshop on Physics of PolyDomain Liquid Crystalline Elastomers. Institute of Natural Sciences, China. Last mod. 9 Jun 2011. Viewed on 3 May 2012 at http:// ins.sjtu.edu.cn/ programs/2011/ ws_ppdlce/list.html .

Kenji, U., Seiji, H. and Toshikazu, T. “Deformation coupled to director rotation in swollen nematic elastomers under electric fields”. American Chemical Society 39, pp.1943-1949, (2006). DOI: https://doi.org/10.1021/ma052762q

Yusril, Y. “Low-voltage-driven electromechanical effects of swollen liquid-crystal elestomers”. The American Physical Society 71, pp.1-8, (2005). DOI: https://doi.org/10.1103/PhysRevE.71.061702

Dong-Uk, C. “Electrical effects of swollen polydomain liquid crystal elastomers”. Journal of the Physical Society of Japan 75, 1-4, (2006). DOI: https://doi.org/10.1143/JPSJ.75.083711

Reza, M., Christopher, M.S., Jawad, N. and Banahalli, R.R. “Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles”. Sensors and Actuators A: Physical 178, pp.175-178, (2012). DOI: https://doi.org/10.1016/j.sna.2012.01.026

Vivi, H., Ahmad, K. and Yusril, Y. “Study of thermo-mechanical effects of dry main-chain liquid crystal elastomers (MCLCEs)”. Proceedings of the 3rd Asian Physics Symposium, 22-23 Jul., 97-101, (2009).

Courty S., Mine J., Tajbakhsh A. R., and Terenthev E. M. “Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators”, Europhysics letters, Europhys. Lett., 64 (5), pp. 654– 660, (2003). DOI: https://doi.org/10.1209/epl/i2003-00277-9

Hiscock, T., Warner, M. and Palffy-Muhoray, P. “Solar to electrical conversion via liquid crystal elastomers”. Journal of Applied Physics 109, pp.1-9, (2011). DOI: https://doi.org/10.1063/1.3581134

Published

2015-01-25

How to Cite

Evaluation of the Important Properties of Liquid Crystal Elastomers (LCEs). (2015). Journal of Zankoy Sulaimani - Part A, 17(1), 205-217. https://doi.org/10.17656/jzs.10374

Most read articles by the same author(s)

<< < 60 61 62 63 64 65 66 67 68 69 > >>