On Limit Cycles of Planar Dynamical System Via Dulac- Cherkas Function


  • Azad Ibrahim Amen Department of Mathematics, College of Basic Education, University of Salahaddin, Erbil, Iraq. Author




Limit cycles Bendixson function Dulac-Cherkas function planar vector field


The main aim of this paper is to construct Bendixson-Dulac and Dulac-Cherkas functions
to study the maximum number of limit cycles for several families of planar dynamical
system. We also apply the results to Lienard and biochemistry reaction systems.


Chavarriga J. and Grau M. Some open problems related to 16th Hilbert problem. Series A: Mathematical Sciences, Vol. 9 (2003), 1–26.

Cherkas L. ,Grin A., and Schneider K.R.Dulac-Cherkas functions for generalizedLienard systems. Elec.J. Qual.Theo.Diff.Eqs.35(2011)1-23. DOI: https://doi.org/10.14232/ejqtde.2011.1.35

Cherkas L. and GrinA..Bendixson-Dulac criterion and reducation to global uniqueness in the problem of estimating the number of limit cycles.Diff,Eqs. vo.46,no.1(2010)61-69. DOI: https://doi.org/10.1134/S0012266110010076

Cherkas L. and GrinA..On a Dulac function for the Kuklessystem.Diff,Eqs. vo.46,no.6(2010)818-826. DOI: https://doi.org/10.1134/S0012266110060066

Gasull A. andGiacominiH..Some applications of the extended Bendixson-Dulactheorem.preprint, arXiv: 1035.3402(2013). DOI: https://doi.org/10.1007/978-3-642-38830-9_14

GineJ.Dulac functions of planar vector fields.Qual.Theo.Dyn.Sys.vol.13 (2014)121-128. DOI: https://doi.org/10.1007/s12346-014-0108-x

LiuX.G.Limit cycles in a class of biochemistry reaction systems. Dyn. Cont.Disc. Imp.Sys.A.Math. Ana.12(2005)675-684.

Odani K., The integration of polynomial Li ́enard systems by elementary functions, Diff. Eqs.Dyn. Sys 5(3-4) (1997) 347–354, Planar nonlinear dynamical systems (Delft, 1995).



How to Cite

On Limit Cycles of Planar Dynamical System Via Dulac- Cherkas Function. (2015). Journal of Zankoy Sulaimani - Part A, 17(2), 45-50. https://doi.org/10.17656/jzs.10379