On Limit Cycles of Planar Dynamical System Via Dulac- Cherkas Function
DOI:
https://doi.org/10.17656/jzs.10379Keywords:
Limit cycles Bendixson function Dulac-Cherkas function planar vector fieldAbstract
The main aim of this paper is to construct Bendixson-Dulac and Dulac-Cherkas functions
to study the maximum number of limit cycles for several families of planar dynamical
system. We also apply the results to Lienard and biochemistry reaction systems.
References
Chavarriga J. and Grau M. Some open problems related to 16th Hilbert problem. Series A: Mathematical Sciences, Vol. 9 (2003), 1–26.
Cherkas L. ,Grin A., and Schneider K.R.Dulac-Cherkas functions for generalizedLienard systems. Elec.J. Qual.Theo.Diff.Eqs.35(2011)1-23.
Cherkas L. and GrinA..Bendixson-Dulac criterion and reducation to global uniqueness in the problem of estimating the number of limit cycles.Diff,Eqs. vo.46,no.1(2010)61-69.
Cherkas L. and GrinA..On a Dulac function for the Kuklessystem.Diff,Eqs. vo.46,no.6(2010)818-826.
Gasull A. andGiacominiH..Some applications of the extended Bendixson-Dulactheorem.preprint, arXiv: 1035.3402(2013).
GineJ.Dulac functions of planar vector fields.Qual.Theo.Dyn.Sys.vol.13 (2014)121-128.
LiuX.G.Limit cycles in a class of biochemistry reaction systems. Dyn. Cont.Disc. Imp.Sys.A.Math. Ana.12(2005)675-684.
Odani K., The integration of polynomial Li ́enard systems by elementary functions, Diff. Eqs.Dyn. Sys 5(3-4) (1997) 347–354, Planar nonlinear dynamical systems (Delft, 1995).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Azad Ibrahim Amen

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.