Distance Measurement using an Infrared Distance Sensor Based on Lagrange and Newton Interpolating Polynomials.

Authors

  • Rawaz H. Abdullah Department of Communication Engineering, Technical College of Engineering, Sulaimani Polytechnic University, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10408

Keywords:

Infrared (IR) distance measuring sensor, Distance measurement, Optical triangulation method, Newton and Lagrange interpolating polynomials, Error estimation

Abstract

This paper presents two models for distance measurement to a very popular infrared (IR) distance measuring sensor from SHARP, which has applications in projects that require cheap and accurate distance measurements. The sensor outputs a voltage at any distance (with a range from 10 cm to 80 cm) from an object based on the optical triangulation method. The variety of the reflectivity of the object, the environmental temperature and the operating duration are not influenced easily to the distance detection. The presented models in this paper are based on Newton and Lagrange interpolating polynomials, which require a few data points to compute the polynomial equations and thereby the distance from any object could be computed easily. The expected errors in distance estimation for the two proposed models are analyzed. As it is evident from the results, the two models could be used easily with insignificant amount of error.

References

G. Benet, F. Blanes, J.E. Simó, P. Pérez, " Using infrared sensors for distance measurement in mobile robots " ,

Journall of Robotics and Autonomous Systems, Vol. 40, pp. (2555-266), 2002.

Miguel Angel Garcia and Agusti Solanas, " Automatic distance measurement and material characterization with

infrared sensors ", Springer-Verlag Berlin Heidelberg, RoboCup 2004, Vol. 3276, pp. (451–458), 2005.

Tarek Mohammad., " Using ultrasonic and infrared sensors for distance measurement ", World Academy of

Science, Engineering and Technology, Vol. 51, pp.(293-298), 2009.

P. M. Novotny and N. J. Ferrier, " Using infrared sensors and the Phong illumination model to measure distances ",

IEEE International Conference on Robotics and Automation, pp.(1644-1649), 1999.

Henrik Andersson, "Position Sensitive Detectors - Device Technology and Applications in Spectroscopy", Doctoral

Thesis, Department of Information Technology and Media, Mid Sweden University, 2008.

M.R. Yaacob, N.S.N. Anwar, and A.M. Kassim, " Effect of Glittering and Reflective Objects of Different Colors to

the Output Voltage-Distance Characteristics of Sharp GP2D120 IR ", ACEEE Int. J. on Electrical and Power

Engineering, Vol. 03, No. 02, 2012.

C. Mulsow, M. Schulze, P. Westfel, " An optical triangulation method for height measurements on instationary

water surfaces ", IAPRS, Vol. XXXVI, Part 5, 2006.

Christian Mulsow, Hans-Gerd Maas, Patrick Westfeld, and Matthias Schulze, " Triangulation methods for height

profile measurements on instationary water surfaces ", Journal of Applied Geodesy, Vol.2, pp.(21-29), 2008.

Data sheet of (GP2Y0A21YK0F) Sharp distance measuring sensor, Sheet No. E4-A00201 EN, ©SHARP

Corporation, 2006. ( http://www.sharpsma.com/webfm_send/1489)

Paulo Malheiros, José Gonçalves and Paulo Costa, " Towards a more accurate infrared distance sensor model

", International Symposium on Computational Intelligence for Engineering Systems, ISEP-Porto Portugal, 2009.

Steven C. Chapra, "Applied Numerical Methods with MATLAB® for Engineers and Scientists," 3rd edition,

McGraw-Hill, New York/USA, 2012.

Richard L. Burden, and J. Douglas Faires, "Numerical Analysis", 9th edition, Brooks/Cole, Boston/USA, 2011.

Published

2015-04-19

How to Cite

Distance Measurement using an Infrared Distance Sensor Based on Lagrange and Newton Interpolating Polynomials. (2015). Journal of Zankoy Sulaimani - Part A, 17(3), 149-160. https://doi.org/10.17656/jzs.10408

Most read articles by the same author(s)

<< < 66 67 68 69 70 71 72 73 74 75 > >>