Previously licensed anti-mycobacterial drugs: a re-appraisal.

Authors

  • Sirwan Muhsin Muhammed Ameen School of Science, University of Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10513

Keywords:

Mycobacterium tuberculosis, Anti-tuberculosis drugs

Abstract

The discovery of antimycobacterial agent was the outcome of intensive efforts made between 1930 and 1970 to identify antimicrobial drugs. Sulfonamides (1930s), Streptomycin (1944) and Rifampicin (1965) are first and the last of the anti-mycobacterial drugs currently in use. Despite the availability of effective anti-tuberculosis chemotherapy, significant morbidity and mortality due to this disease continue to occur. The emergence and spread of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains of Mycobacterium tuberculosis has more complicated the problem of tuberculosis (TB) control and reduced the effectiveness of the current anti-TB drug. The present situation clearly demonstrates the need for a re-evaluation of our knowledge to treating TB and the current TB drugs. One of the highest achievements of modern medicine has been the development of antibiotics for the treatment of lethal infections. Unfortunately, the progress for new drugs against tuberculosis has been very inadequate over the past four decades. In the fight against emerging MDR and XDR resistance we can no longer rely completely on the finding of new antibiotics; we must also follow rational approaches to the use of older antibiotics such as sulfonamide. This review provides a concise historical of previously licensed drugs for treatment of tuberculosis and the targets and their mode of action of these drugs are briefly discussed.

References

Sakula, A. Robert Koch: Centenary of the Discovery of the Tubercle Bacillus, 1882. Thorax. 37: 246-251. (1983). DOI: https://doi.org/10.1136/thx.37.4.246

Sakula, A. Robert Koch: The story of his discoveries in tuberculosis. Ir.J.med. Sci.153; Supp.3-9. (1985). DOI: https://doi.org/10.1007/BF02938285

Hemmati, M., Seghatoleslam, A., Rasti, M. et al. Expression and Purification of Recombinant Mycobacterium tuberculosis (TB) Antigens, ESAT-6, CFP-10 and ESAT-6/CFP-10 and Their Diagnosis Potential for Detection of TB Patients. Iran Red Crescent Med J.13:556-563. (2011).

Venturini E, Turkova A, Chiappini E et al. Tuberculosis and HIV co-infection in children. BMC Infect Dis. 14 Suppl 1:S5. (2014). DOI: https://doi.org/10.1186/1471-2334-14-S1-S5

World Health Organization. Global tuberculosis report: www.who.int/tb/publications/global-report/en/.(2014)

Migliori, G.B., Dheda, K., Centis, R. et al. Review of multidrug-resistant and extensively drug-resistant TB: global perspectives with a focus on sub-Saharan Africa. Tropical Medicine and International Health.15 (9): 1052-1066. (2010). DOI: https://doi.org/10.1111/j.1365-3156.2010.02581.x

World Health Organization. Extensively drug-resistant tuberculosis (XDR-TB): recommendations for prevention and control. Weekly Epidemiol. Rec., 81, 430–432. (2006).

Lange, C., Yew, W.W., Migliori, G.B., Raviglione, M. The European Respiratory Journal targets tuberculosis. Eur Respir J. 36: 714-715. (2010). DOI: https://doi.org/10.1183/09031936.00055310

Ashburn T and Thor KB. Drug repositioning: identifying and developing new uses for existing. Nat. Rev. Drug Discov. 3, 673–683. (2004). DOI: https://doi.org/10.1038/nrd1468

Forgacs, P., Wengenack , N. L., Hall, L., Zimmerman , S. K., Silverman, M. L., and Roberts , G. D. Tuberculosis and trimethoprim-sulfamethoxazole. Antimicrob. Agents Chemother. 53:4789-4793. (2009). DOI: https://doi.org/10.1128/AAC.01658-08

Markowitz, N. Quinn, E.L and Saravolatz, L.D. Trimethoprim­sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med.117:390­8. (1992). DOI: https://doi.org/10.7326/0003-4819-117-5-390

Stein, A. and Raoult, D. Colistin: an antimicrobial for the 21st century? Clin Infect Dis .35:901-902. (2002). DOI: https://doi.org/10.1086/342570

Crofton, J and Mitchison, D. Streptomycin resistance in pulmonary tuberculosis. Br. Med.J. 2: 1009-1015. (1948). DOI: https://doi.org/10.1136/bmj.2.4588.1009

Johnson, R., Streicher, E. M., Louw, G.E. et al. Drug Resistance in Mycobacterium tuberculosis. Curr. Issues Mol. Biol. 8: 97-112. (2009).

Campbell, C.W. History of the Discovery of Sulfaquinoxaline as a Coccidiostat. J. Parasitol., 94: 934–945. (2008). DOI: https://doi.org/10.1645/GE-1413.1

Burkhart, C.G and Burkhart, C.N. Overview of Sulfonamides and Related Medications: Query if Mesalamine should be preferred over Dapsone and Sulfasalazine. The Open Dermatology Journal. 3: 65-67. (2009). DOI: https://doi.org/10.2174/1874372200903010065

Balganesh T.S, Balasubramanian V and Anand Kumar S. For Tuberculosis: Bottlenecks and path forward. Current Science. 86: 167-176. (2004)

Chopra, I and Brennan, P. Molecular action of antimycobacterial agents. Tubercle Lung Dis. 78: 89-98. (1998). DOI: https://doi.org/10.1016/S0962-8479(98)80001-4

Buttle, G.A.H. The action of sulphanilamide and its derivatives with special reference to tropical diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene. 33: 141-159. (1939). DOI: https://doi.org/10.1016/S0035-9203(39)90096-9

George, E and Shambaugh, JR.MD. History of Sulfonamides.Arch Otolaryngol.83:1-2. (1966). DOI: https://doi.org/10.1001/archotol.1966.00760020003001

Amundsen L H. Sulfanilamide and Related Chemotherapeutic Agents. Journal of Chemical Education. 19: 167-171. (1942). DOI: https://doi.org/10.1021/ed019p167

Spies, H. W., Lepper, M. H., Blatt, N. H. and Dowling, H. F. Tuberculous meningitis treatment with streptomycin, para-aminosalicylic acid and promizole, isoniazid and streptomycin, and isoniazid. Am. Rev. Tuberc. 69:192-204. (1954).

Behera, D. Tuberculosis. QUARTERLY MEDICAL REVIEW. RAPTAKOS, BRETT & CO. LTD., WORLI MUMBAI 400 030. 61 :( 4). (2010).

Hinshaw, H.C and McDermott, W. Thiosemicarbazone therapy of tuberculosis in human. Am. Rev. Tuberc. 61:145- 57. (1950).

Karl H and Pfuetze. Present Status of Chemotherapy in Tuberculosis from the Clinical Standpoint. Chest.11: 220-226. (1945). DOI: https://doi.org/10.1378/chest.11.3.220

Ellman, P. Investigation in the value of sulfapyridine in the treatment of pulmonary tuberculosis. Tubercle. 22:296-302. (1941). DOI: https://doi.org/10.1016/S0041-3879(41)80057-9

Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen, Deutsche med. Wlchutschr. 61:250. (1935). DOI: https://doi.org/10.1055/s-0028-1129486

Anderson T. Chemotherapy of pulmonary tuberculosis with sulphetrone. Lancet. 2:135-9. (1948). DOI: https://doi.org/10.1016/S0140-6736(48)90495-4

Madigan, D. G., Swift, P. N., Brownlee, G., Payling Wright, G. Treatment of tuberculosis with streptomycin and sulphetrone. Lancet, 2: 897-904. (1947). DOI: https://doi.org/10.1016/S0140-6736(47)90912-4

Chang WJ and Goetz MB.). Response to treatment of infection due to Mycobacterium avium complex with trimethoprim-sulfamethoxazole. Clin Infect Dis 14:1267-1268. (1992). DOI: https://doi.org/10.1093/clinids/14.6.1267

Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; Approved Standard. Wayne, PA: CLSI, Document No. M24-A. (2003).

Ong, W, Sievers A and Leslie DE. Mycobacterium tuberculosis and sulfamethoxazole susceptibility. Antimicrob. Agents Chemother.54: 2748–2749. (2010). DOI: https://doi.org/10.1128/AAC.00029-10

Huang TS, Kunin CM, Yan BS, et al. Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan. J Antimicrob Chemother; 67: 633-7. (2012). DOI: https://doi.org/10.1093/jac/dkr501

Waksman, S. A. Streptomycin: background, isolation, properties, and utilization. Science 118:259–266. (1953). DOI: https://doi.org/10.1126/science.118.3062.259

Mcdermott, W. Streptomycin in the Treatment of Tuberculosist. J Natl Med Assoc. 41:167-70. (1949).

Pfuetze KH and Ashe WM. Present Status of Streptomycin In Tuberculosis. chest.41: 446-455. (1948). DOI: https://doi.org/10.1378/chest.14.3.446

Comroe JH Jr. Pay dirt: the story of streptomycin. Part I. From Waksman to Waksman.117:773-81. (1978).

Camille G.W. The Practice of Medicinal Chemistry. 3th Edition. Academic Press is an imprint of Elsevier: 20. (2008).

Schatz AB, Bugie E and Waksman S. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp.Biol. Med. 55:66–69. (1944). DOI: https://doi.org/10.3181/00379727-55-14461

Hinshaw HC and Feldman WH. Streptomycin in the treatment of clinical and experimental tuberculosis. Ann.N.Y. Acad. Sci.46:175-182. (1946). DOI: https://doi.org/10.1111/j.1749-6632.1946.tb31761.x

Dickinson. EFFECT OF STREPTOMYCIN ON EXPERIMENTAL TUBERCULOSIS IN GUINEA-PIGS. Brit. J. Pharmacol. 2, 23. (1947). DOI: https://doi.org/10.1111/j.1476-5381.1947.tb00317.x

Hinshaw HC. , Feldman WH. and Pfuetze, K. H. Treatment of tuberculosis with streptomycin; a summary of observations on one hundred. J. Amer. med.Ass.132: 778-782. (1946). DOI: https://doi.org/10.1001/jama.1946.02870480024007

Imam F., Anwer M.K., Iqbal M. et al. Tuberculosis: Brief Overview and its Shifting Paradigm for Management in India. Int. J. Pharmacol. 6: 755-783. (2010) DOI: https://doi.org/10.3923/ijp.2010.755.783

Zhang Y. The Magic Bullets and Tuberculosis Drug Targets. Annu. Rev. Pharmacol. Toxicol.42: 529-64. (2005). DOI: https://doi.org/10.1146/annurev.pharmtox.45.120403.100120

Daniels M and Hill AB. Chemotherapy for pulmonary tuberculosis in young adults: an analysis of the combined results of three Medical Reserearch Council trials. Brit Med J.1:1162-1168. (1952). DOI: https://doi.org/10.1136/bmj.1.4769.1162

Jassal M and Bishai W R. Extensively drug-resistant tuberculosis. Lancet Infect Dis.9:19-30. (2009). DOI: https://doi.org/10.1016/S1473-3099(08)70260-3

Blanchard J S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem.65: 215-239. (1996). DOI: https://doi.org/10.1146/annurev.bi.65.070196.001243

De Souza, M.V.N. Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia 80, 453-460. (2009) DOI: https://doi.org/10.1016/j.fitote.2009.07.010

Sensi, P. History of the development of rifampin. Rev. Infect. Dis. 3, 402–406. (1983). DOI: https://doi.org/10.1093/clinids/5.Supplement_3.S402

Saltini, C. (2006).Chemotherapy and diagnosis of tuberculosis. Resp Med.100:2085-2097. DOI: https://doi.org/10.1016/j.rmed.2006.09.015

Davidson PT, Goble M and Lester W. The antituberculosis efficiency of rifampicin in 136 patients. Chest.61:574-578. (1972). DOI: https://doi.org/10.1016/S0012-3692(15)39158-3

Vall-Spinosa A. and Lester T.W. Rifampin: Characteristics and role in the chemotherapy of tuberculosis. Ann Intern Med.74:758-760. (1971). DOI: https://doi.org/10.7326/0003-4819-74-5-758

Kirst H A and Sides G D. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antirnicrob Agents. 33: 1413-1418. (1989). DOI: https://doi.org/10.1128/AAC.33.9.1413

Tripathi R. P., Tewari, N., Dwivedi, N. and Tiwari, V. K. Fighting tuberculosis: an old disease with new challenges. Med. Res. Rev. 25:93-131. (2005). DOI: https://doi.org/10.1002/med.20017

Kumazawa J and Yagisawa M. The history of antibiotics: the Japanese story. J Infect Chemother. 8:125-133. (2002). DOI: https://doi.org/10.1007/s101560200022

Sood SK. Macrolides: clarithromycin and azithromycin. Semin Pedatr Infect Dis. 10:23-30. (1999). DOI: https://doi.org/10.1016/S1045-1870(99)80006-5

McKenna S, Evans GA and Canadian Infectious Disease Society Antimicrobial Agents Committee. Macrolides: A Canadian Infectious Disease Society Position Paper. Can J Infect Dis.12:218-231. (2001). DOI: https://doi.org/10.1155/2001/657353

Franzblau, S. G. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob. Agents Chemother. 33:2115-2117. (1989). DOI: https://doi.org/10.1128/AAC.33.12.2115

Franzblau, S. G., and Hastings R. C. In vitro and in vivo activities of macrolides against Mycobacterium leprae. Antimicrob. Agents Chemother. 32:1758-1762. (1988). DOI: https://doi.org/10.1128/AAC.32.12.1758

Chan GP, Garcia-Ignacio BY, Chavez VE, et al.Clinical trial of clarithromycin for lepromatous leprosy. Antimicrob Agents Chemother.38:515-517. (1994). DOI: https://doi.org/10.1128/AAC.38.3.515

Grosset JH. Newer drugs in leprosy. Int J Lepr Other Mycobact Dis.69: S14-S18. (2001).

Truffot-Pernot C, Lounis N, Grosset JH, and Ji B. Clarithromycin is inactive against Mycobacterium tuberculosis. Antimicrob Agents Chemother.39:2827-2828. (1995). DOI: https://doi.org/10.1128/AAC.39.12.2827

Rastogi N, Goh KS, Berchel M and Bryskier A In vitro activities of the ketolides telithromycin (HMR 3647) and HMR 3004 compared to those of clarithromycin against slowly growing mycobacteria at pHs 6.8 and 7.4. Antimicrob Agents Chemother. 44:2848-2852. (2000). DOI: https://doi.org/10.1128/AAC.44.10.2848-2852.2000

Stoffels K, Traore H, Vanderbist F et al. The effect of combined tobramycin-clarithromycin on Mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis .13: 1041-1044. (2009).

Bhusal Y, Shiohira CM and Yamane N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int J Antimicrob Agents. 26: 292-297. (2005). DOI: https://doi.org/10.1016/j.ijantimicag.2005.05.005

Sharma P.C., Jain A and Jain S. Fluoroquinolone Antibacterial: A Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol. Pharm.Drug Res.66:587-604. (2009).

Appelbaum PC and Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents.16:5-15. (2000). DOI: https://doi.org/10.1016/S0924-8579(00)00192-8

Bartlett J. G., Dowell S. F., Mandell L. A. et al. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis. 31: 347-382. (2000). DOI: https://doi.org/10.1086/313954

Ginsburg, A.S., Grosset, J.H., and Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis. 3:432-442. (2003). DOI: https://doi.org/10.1016/S1473-3099(03)00671-6

Gay, J. D., DeYoung D. R and Roberts G. D. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M. fortuitum, and M. kansasii. Antimicrob. Agents Chemother.26:94-96. (1984). DOI: https://doi.org/10.1128/AAC.26.1.94

Watt B. In-vitro sensitivities and treatment of less common mycobacteda. J Antimicrob Chemother.39:567-574. (1997). DOI: https://doi.org/10.1093/jac/39.5.567

Iseman MD. Tuberculosis therapy: (past), present and future. Eur Respir J. 36: S87-94. (2002). DOI: https://doi.org/10.1183/09031936.02.00309102

Blumberg HM, Burman WJ, Chaisson RE, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: Treatment of Tuberculosis. Am. J. Respir. Crit. Care Med.167: 603-622. (2003). DOI: https://doi.org/10.1164/rccm.167.4.603

World Health Organization. Stop TB Dept. Guidelines for the programmatic management of drug-resistant tuberculosis [WHO/HTM/TB/2006.361]. Geneva: World Health Organization,:38-53. (2006).

Yew WW, Chan CK, Leung CC, Chau CH, Tam CM, Wong PC, et al. Comparative roles of levofloxacin and ofloxacin in the treatment of multidrug-resistant tuberculosis: preliminary results of a retrospective study from Hong Kong. Chest. 124:1476-81. (2003). DOI: https://doi.org/10.1378/chest.124.4.1476

Tuberculosis Research Centre (Indian Council of Medical Research). Shortening short course chemotherapy: a randomized clinical trial for treatment of smear positive pulmonary tuberculosis with regimens using ofloxacin in the intensive phase. Indian Journal of Tuberculosis. 49:27-38. (2002).

Nueremberger E L, Yoshimatsu T, Tiagy S et al. Moxifloxacin containing regimen greatly reduces time to cultureconversion in murine tuberculosis. Am J Respir Crit Care Med.169:334-335. (2004). DOI: https://doi.org/10.1164/rccm.200310-1380OC

Lubasch A, Erbes R, Mauch H and Lode H. Sparfloxacin in the treatment of drug resistant tuberculosis or intolerance of first line therapy. Eur Respir J.17: 641-646. (2001). DOI: https://doi.org/10.1183/09031936.01.17406410

Alvirez- Freites EJ, Carter JL and Cynamon MH. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother.46:1022-1025. (2002). DOI: https://doi.org/10.1128/AAC.46.4.1022-1025.2002

Harned RL and Haute T. Recovery of cycloserine.Ind. assignor to commercial solvent corporation , New York, N.Y., a corporation with Maryland.3,124,590. (1964).

Somaraju V. Drugs used in tuberculosis and leprosy. In Modern Pharmacology with Clinical Applications (6th edn), Craig CR, Stitzel RE (eds). Lippincott Williams & Wilkins: Philadelphia. 557-566. (2003).

Murdoch JM. Cycloserine in Treatment of Infection of Urinary Tract. Br Med J.21:1055-1058. (1959). DOI: https://doi.org/10.1136/bmj.2.5159.1055

Achilladelis, B."The Dynamics of Technological Innovation: The Sector of Antibacterial Medicines". Research Policy. 22: 279-308. (1993). DOI: https://doi.org/10.1016/0048-7333(93)90001-X

David, S. Synergic activity of D-cycloserine and β-chloro-D-alanine against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 47: 203-206. (2001). DOI: https://doi.org/10.1093/jac/47.2.203

Arbex M.A, Varella M.C, Siqueira H.R and Mello F.A. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 1: first-line drugs. J Bras Pneumol. 36:626-40. (2010). DOI: https://doi.org/10.1590/S1806-37132010000500016

Rieder HL. Interventions for Tuberculosis Control and Elimination. © International Union Against Tuberculosis and Lung Disease. 68 boulevard Saint Michel, 75006 Paris, France.41-45. (2002).

Mario CR.Tuberculosis: The essentials :( Lung biology in health and disease).237:4th Ed. (2010).

Canetti G, Fox W, Khomenko et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity testing in tuberculosis control programs. Bull World Health Organ. 41:21-43. (1969).

World Health Organization. Treatment of Tuberculosis Guidelines. 4th ED. (2010).

Rastogi N, Labrousse V and Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol .33:167-175. (1996). DOI: https://doi.org/10.1007/s002849900095

Cohen AC. Pyridoxine in prevention and treatment of convulsions and neurotoxicity due to cycloserine. Ann NY Acad Sci .166:346-349. (1969). DOI: https://doi.org/10.1111/j.1749-6632.1969.tb54286.x

Salem, I.I., Steffan, G. and Düzgünes, N. Efficacy of clofazimine-modified cyclodextrin against Mycobacterium avium complex in human macrophages. International Journal of Pharmaceutics 260:105-114. (2003). DOI: https://doi.org/10.1016/S0378-5173(03)00236-9

Ausina, V., Condom, M. J., Mirelis, B., Luquin, M., Coll, P and Prats, G. In Vitro Activity of Clofazimine against Rapidly Growing Nonchromogenic Mycobacteria. Antimicrob. Agents Chemother.29: 951-952. .(1986) DOI: https://doi.org/10.1128/AAC.29.5.951

Barry, V.C., Belton, J.G., Conalty, M.L., et al. A new series of phenazines (riminocompounds) with high antituberculosis activity. Nature (London).179:1013-101. (1957). DOI: https://doi.org/10.1038/1791013a0

Van Landingham, R.M., Walker,L.L.,O Sullivan, J.F. and Shinnivk. Activity of Phenazine Analogs Against Mycobacterium leprae Infections in mice. International Journal of Leprosy.61:406-414. (1993).

Cholo, M.C., Steel, H.C., Fourie, P. B., Germishuizen, W.A and Anderson, R. Clofazimine: current status and future prospects. J Antimicrob Chemother. 67: 290-298. (2012). DOI: https://doi.org/10.1093/jac/dkr444

Currey, H.L.F. and fowler, P.D. A study of clofazimine in the rat. Br. J. Pharmac. 45: 676-681. (1972). DOI: https://doi.org/10.1111/j.1476-5381.1972.tb08126.x

Reddy,V.M., Sullivan, J.F. and Gngadharam, P.R.J. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother.43:615-623. (1999). DOI: https://doi.org/10.1093/jac/43.5.615

Mitnick CD, Shin SS, Seung KJ, et al. Comprehensive treatment of extensively drug-resistant tuberculosis. N Engl J Med .359:563-574. (2008). DOI: https://doi.org/10.1056/NEJMoa0800106

Xu, H.B., Jiang, R.H. and Xiao, H.P. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clinical Microbiology and Infection. 18:1104-10. (2012). DOI: https://doi.org/10.1111/j.1469-0691.2011.03716.x

Field, S.K. and Cowie, R.L. Treatment of Mycobacterium intracellulare complex lung disease with a Macrolide, Ethambutol and Clofazimine. Chest: 124:1482-1486. (2003). DOI: https://doi.org/10.1378/chest.124.4.1482

Long, R., Nobert, E., Chomy, S. et al. Transcontinental Spread of Multidrug-resistant Mycobacterium bovis. Am J Respir Crit Care Med. 159: 2014–2017. (1999). DOI: https://doi.org/10.1164/ajrccm.159.6.9809076

Browne, S.G and Hogerzeil, L.M. “B 663” in the treatment of leprosy. reliminary report of a pilot trial. Lepr. Rev. 33: 6-10. (1962). DOI: https://doi.org/10.5935/0305-7518.19620002

World Health Organization Study Group on Leprosy, Chemotherapy of leprosy control programs (WHO teehnieal report series 675). Geneva, World Heallh Organization, (1982).

Caminero JA, Sotgiu G, ZumLa A et al. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis. 10: 621-9. (2010). DOI: https://doi.org/10.1016/S1473-3099(10)70139-0

Fortun J, Martin-Davila P, Navas E. et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J Antimicrob Chemother. 56:180-185. (2005). DOI: https://doi.org/10.1093/jac/dki148

Piersimoni, C, Tortoli E, Mascellino, M. T. et al. Activity of seven antimicrobial agents, alone and in combination, against AIDS-associated isolates of Mycobacterium avium complex. J Antimicrob Chemother. 36: 497-502. (1995). DOI: https://doi.org/10.1093/jac/36.3.497

Cohn, D.L., Fisher, E.J., Peng, G.T. et al. A Prospective Randomized Trial of Four Three-Drug Regimens in the Treatment of Disseminated Mycobacterium avium Complex Disease in AIDS Patients: Excess Mortality Associated with High-Dose Clarithromycin. Clinical Infectious Diseases .29:125-133. (1999). DOI: https://doi.org/10.1086/520141

Lopez de Compadre R. L., Pearlstein R. A., Hopfinger A. J and Seydel J. K. A quantitative structure-activity relationship analysis of some 4-aminodiphenyl sulfone antibacterial agents using linear free energy and molecular modeling methods. J. Med. Chem. 30:900–906. (1987). DOI: https://doi.org/10.1021/jm00388a026

Legendre DP, Pharm D, Muzny CA M.D and Swiatlo E.M.D., Ph.D. Hansen’s Disease (Leprosy): Current and Future Pharmacotherapy and Treatment of Disease-Related Immunologic Reactions. Pharmacotherapy .32:27-37. (2012). DOI: https://doi.org/10.1002/PHAR.1009

Barr J. A short history of Dapsone, or an alternative model of drug development. J Hist Med Allied Sci. 66: 425-467. (2011). DOI: https://doi.org/10.1093/jhmas/jrq068

Sire DJ and Johnson BL: Benign familial chronic pemphigus treated with dapsone. Arch Dermatol . 103:262-265. (1971) DOI: https://doi.org/10.1001/archderm.103.3.262

Buttle G, Stephenson D, Smith S, et al. The treatment of streptococcal infections in mice with 4:4 diaminodiphenylsulfone. Lancet. 1:1331-1334. (1937). DOI: https://doi.org/10.1016/S0140-6736(00)75868-5

Shepard C. Leprosy today. N Engl J Med .307:1640-1641. (1982). DOI: https://doi.org/10.1056/NEJM198212233072608

Ooi WW and Moschclla SL. Update on leprosy in immigrants in the United States: Status in the year 2000. Clin Infect Dis .32:930-937. (2001). DOI: https://doi.org/10.1086/319357

World Health Organization. WHO Expert Committee on Leprosy. Seventh report. World Health Organ Tech Rep Ser. 874:1-43. (1998).

Pettit JHS and Rees RJW. Sulphone resistance in leprosy: An experimental and clinical study. Lancet.2:673-674. (1964). DOI: https://doi.org/10.1016/S0140-6736(64)92482-1

Herbert Fox H. A Critique on Literature of Antituberculous Compounds. Advances in Chemistry.16:28-31. (1956). DOI: https://doi.org/10.1021/ba-1956-0016.ch004

Rastogi N, Goh KS and Labrousse V. Activity of subinhibitory concentrations of dapsone alone and in combination with cell-wall inhibitors against Mycobacterium avium complex organisms. Eur J Clin Microbiol Infect Dis.12:954-958. (1993). DOI: https://doi.org/10.1007/BF01992173

Williams D. L., Pittman T. L., Gillis T. P. et al. Simultaneous detection of Mycobacterium leprae and its susceptibility to dapsone using DNA heteroduplex analysis. J. Clin. Microbiol.39:2083-2088. (2001). DOI: https://doi.org/10.1128/JCM.39.6.2083-2088.2001

George J and Balakrishnan S. Blood dapsone levels in leprosy patients treated with acedapsone. Indian J Lepr. 58:401-406. (1986).

Wilkinson, R. G., R. G., Shepherd, J. P., Thomas and Baughn C. Stereospecificity in a new type of synthetic antituberculous agent. J. Am. Chem. Soc. 83: 2212-2213. (1961). DOI: https://doi.org/10.1021/ja01470a052

Schmidt, L. H. Studies of the antituberculosis activity of ethambutol in monkeys. Ann. N.Y. Acad. Sci. 135:747-758. (1966). DOI: https://doi.org/10.1111/j.1749-6632.1966.tb45520.x

Kemper CA, Havlir D, Haghighat D, et al. The individual microbiologic effect of three antimycobacterial agents, clofazimine, ethambutol, and rifampin, on Mycobacterium avium complex bacteremia in patients with AIDS. J Infect Dis .170:157–64. (1994). DOI: https://doi.org/10.1093/infdis/170.1.157

Wallace RJ, Glassroth, J, Griffith, DE et al. American Thoracic Society. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. Am. J. Respir. Crit. Care Med. 156: S1–S25. (1997). DOI: https://doi.org/10.1164/ajrccm.156.2.atsstatement

Riska PF, Jacobs WR Jr and Alland D. Molecular determinant of drug resistance in tuberculosis. Int J Tuberc Lung Dis. 4: S4-S10. (2000).

Cheepsattayakorn A and Cheepsattayakorn R. Prospects for new drugs and regimens in the treatment of tuberculosis. J R Coll Physicians Edinb. 38:207–311. (2008).

Liss RH. Bactericidal activity of ethambutol against. extracellular Mycobacterium tuberculosisand bacilli phagocytized by humanulveolal' macrophages. SA Medical Journal. LXII:15-19. (1982).

Hershfield E. Tuberculosis: 9. Treatment. CMAJ.161:405-411. (1999).

Kaur D and Khuller G. In vitro, ex-vivo and in vivo activities of ethambutol and sparfloxacin alone and in combination against mycobacteria. Int J Antimicrob Agents. 17: 51- 55. (2001). DOI: https://doi.org/10.1016/S0924-8579(00)00308-3

Place V.A., Peets E.A., Buyske D. A. and Little R.R. Metabolic and special studies of ethambutol in normal volunteers and tuberculous patients. Ann. N.Y. Acad. Sci. 135:775-795. (1966). DOI: https://doi.org/10.1111/j.1749-6632.1966.tb45522.x

Plinke C, Walter K, Aly S, Ehlers S and Niemann S. Mycobacterium tuberculosis embB Codon 306 Mutations Confer Moderately Increased Resistance to Ethambutol In Vitro and In Vivo. Antimicrob. Agents Chemother. 55: 2891-2896. (2011). DOI: https://doi.org/10.1128/AAC.00007-10

Slayden RA and Barry CE, III. The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes infect. 2:659-669. (2000). DOI: https://doi.org/10.1016/S1286-4579(00)00359-2

Meyer H and Mally J. Über Hydrazinderivate der Pyridincarbonsäuren. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. 23: 393-414. (1912). DOI: https://doi.org/10.1007/BF01517946

Fox, H. H. The chemical approach to the control of tuberculosis. Science.116:129–134. (1952). DOI: https://doi.org/10.1126/science.116.3006.129

Selikoff, I. J. and Robitzek, E. H. Tııberculosis Chemotherapy with Hydrazine Derivatives of Isonicotinic Acid: DiS. of Chest, 21: 385-438. (1952). DOI: https://doi.org/10.1378/chest.21.4.385

International Union Against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ. 60: 555-564. (1982).

Smieja MJ, Marchetti CA, Cook DJ and Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev: CD001363. (2000) DOI: https://doi.org/10.1002/14651858.CD001363

Woldehanna S and Volmink J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev.1: CD000171. (2004).

Zhang Y, Heym B, Allen B, Young D and Cole ST. The catalase peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 358:591–593. (1992). DOI: https://doi.org/10.1038/358591a0

Kergueris MF, Bourin M and Larousse C. Pharmacokinetics of isoniazid: influence of age. Eur J Clin Pharmacol. 30: 335-40. (1986). DOI: https://doi.org/10.1007/BF00541539

Peloquin CA, Namdar R, Dodge AA and Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis.3: 703-10. (1999).

Selikoff I. J., Robitzek E.H., and Ornstein G.G. Treatment of Pulmonary Tuberculosis with Hydrazide Derivatives of Isonicotinic Acid. J. A. M. A. 150:973-980. (1952). DOI: https://doi.org/10.1001/jama.1952.03680100015006

Mitchison, D. A. Basic mechanisms of chemotherapy. Chest .76:771-781. (1979). DOI: https://doi.org/10.1378/chest.76.6_Supplement.771

Nora de Souza, M.V., Bispo, M.F, Gonçalves R.S.B. and Kaiser C.R. Thiourea Derivatives: A Promising Class Against HIV/TB Co-Infection. In Venketaraman V. (ed), Global View of HIV Infection. InTech, Published.127-162. (2011). DOI: https://doi.org/10.5772/23200

Lambelin, G. Pharmacology and Toxicology of Isoxyl. Antibiot. Chemother. 16: 84–95. (1970). DOI: https://doi.org/10.1159/000386807

Phetsuksiri B. Baulard AR, Cooper AM. et al. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob Agents Chemother.43:1042-1051. (1999). DOI: https://doi.org/10.1128/AAC.43.5.1042

König, A. Discussion on Isoxyl. Antibiotica et Chemotherapia. 16:187-202. (1970).

Urbancik, B. Clinical experiences with thiocarlide (isoxyl). Antibiot. Chemother. 16:117-123. (1970). DOI: https://doi.org/10.1159/000386811

Schmid, P. C. H. Clinical experiences in cases of primary tuberculosis with tuberculostaticum isoxyl. Antibiot. Chemother. 16:108–116. (1970). DOI: https://doi.org/10.1159/000386810

Winder, F. G., Collins, P. B. and Whelan, D. Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J. Gen. Microbiol. 66:379–380. (1971). DOI: https://doi.org/10.1099/00221287-66-3-379

Bhowruth, V., Brown, A. K., Reynolds, R. C. et al. Symmetrical and unsymmetrical analogues of isoxyl; active agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett.16: 4743-4747. (2006). DOI: https://doi.org/10.1016/j.bmcl.2006.06.095

Lehmann J. p-aminosalicylic acid in the treatment of tuberculosis. Lancet 1:15-16. (1946). DOI: https://doi.org/10.1016/S0140-6736(46)91185-3

Bernheim F. The effect of salicylate on the oxygen uptake of the tubercle bacillus. Science.92:204. (1940). DOI: https://doi.org/10.1126/science.92.2383.204-a

Erdei, A and Snell W.E. Pulmonary tuberculosis treated with p- aminosalicylic acid. Lancet.1:791. (1948). DOI: https://doi.org/10.1016/S0140-6736(48)90859-9

Youmans, G. P.; Raleigh, G. W., and Youmans, A. S. The Tuberculostatic Action of Para-Aminosalicylic Acid. J. Bact. 54:409. (1947). DOI: https://doi.org/10.1128/jb.54.4.409-416.1947

Cordice, W. V., Hill, L. M. and Wright, L. T. “Use of pyrazinamide (Aldinamide) in the treatment of tuberculous lymphadenopathy and draining sinuses,” J. Nat. M.A. 45:87-98. (1953)

Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H. and Sun, Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52:790–795. (2003). DOI: https://doi.org/10.1093/jac/dkg446

Fuursted K. Comparison of growth and susceptibility testing of pyrazinamide in different Bactec media using strains of the M. tuberculosis complex. APMIS. 101:154-159. (1993). DOI: https://doi.org/10.1111/j.1699-0463.1993.tb00095.x

Yew, W. W., Lange, C. and Leung C. C. Treatment of tuberculosis: update 2010. Eur. Respir. J. 37:441–462. (2011). DOI: https://doi.org/10.1183/09031936.00033010

Blomberg B. Spinaci S. Fourie B and Laing R. The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bull World Health Organ.79:61–68. (2001).

McCune, R. M., R. Tompsett, and W. McDermott. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculosis infection to the latent state by the administration of pyrazinamide and a companion drug. J. Exp. Med. 104:763-802. (1956). DOI: https://doi.org/10.1084/jem.104.5.763

McCune, R M., and R Tompsett. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med. 104:737-762. (1956). DOI: https://doi.org/10.1084/jem.104.5.737

Ahn C., Oh K.H., Kim K., et al. . Effect of peritoneal dialysis on plasma and peritoneal fluid concentrations of isoniazid, pyrazinamide, and rifampin. Perit Dial Int. 23:362-367. (2003) DOI: https://doi.org/10.1177/089686080302300409

Domagk G, Behnisch R, Mietzsch F and SChmidt H. Ueber eine neue, gegen Tuberkelbazillen in vitro wirksame Verbindungsklasse. Naturwissenschaften.33: 315. (1946). DOI: https://doi.org/10.1007/BF00624524

Barry, C. E. III, Slayden R. A., Sampson A. E and Lee, R. E. Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem. Pharmacol.59: 221–231. (2000). DOI: https://doi.org/10.1016/S0006-2952(99)00253-1

Cavanagh, P and McPherson, K. The Thiacetazone sensitivity of Mycobacterium tuberculosis. J. Med. Microbiol.2:237-242. (1969). DOI: https://doi.org/10.1099/00222615-2-3-237

Heifets, L. B., Lindholm-Levy, P. J and Flory, M. Thiacetazone: in vitro activity against Mycobacterium avium and M. tuberculosis. Tubercle. 71:287–291. (1990). DOI: https://doi.org/10.1016/0041-3879(90)90043-8

Barnett M and Dickinson J M. The response to treatment with thiacetazone of guinea-pigs and mice infected with tubercle bacilli obtained from untreated African patients. Tubercle. 44: 417–30. (1963). DOI: https://doi.org/10.1016/S0041-3879(63)80083-5

Barry, V. C., Conalty, M. L and Gaffney, E. E. Amithiozone as an adjuvant to isoniazid therapy. Irish J. med. Sci. 343: 299-303. (1954). DOI: https://doi.org/10.1007/BF02952960

Elliott A M and Foster S D. Thiacetazone: time to call a halt? Considerations on the use of thiacetazone in African populations with a high prevalence of human immunodeficiency virus infection. Tubercle Lung Dis .77: 27–29. (1996). DOI: https://doi.org/10.1016/S0962-8479(96)90071-4

Herr JB, Jr, Haney ME, Pittenger GE and Higgins CE. Isolation and characterization of a new peptide antibiotic. Proc Ind Acad Sci. 69: 134. (1960).

Heifets L and Lindholm-Levy P. Comparison of bactericidal activities of streptomycin, amikacin, kanamycin, and capreomycin against Mycobacterium avium and M. tuberculosis. Antimicrob Agents Chemother. 33: 1298-301. (1989). DOI: https://doi.org/10.1128/AAC.33.8.1298

Heifets L MIC as a quantitative measurement of susceptibility of M. avium to seven antituberculosis drugs. Antimicrob Agents Chemother. 32:1131-1136. (1988). DOI: https://doi.org/10.1128/AAC.32.8.1131

Black H. R., Griffith R. S and Peabody A. M. Absorption, excretion and metabolism of capreomycin in normal and diseased states. Ann N Y Acad Sci 135:974-82. (1966). DOI: https://doi.org/10.1111/j.1749-6632.1966.tb45538.x

Popplewell AG, Miller JD, Greene ME and Landwehr A. Capreomycin in original treatment cases of pulmonary tuberculosis. Ann N Y Acad Sci .135:989-1005. (1996). DOI: https://doi.org/10.1111/j.1749-6632.1966.tb45540.x

Klemens S P,Destefano MS and Cynamon MH. Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob Agents Chemother .37: 2344-2347. (1993). DOI: https://doi.org/10.1128/AAC.37.11.2344

McClatchy J. K., Kanes W., Davidson P. T and Moulding T. S. Cross-resistance in M. tuberculosis to kanamycin, capreomycin, and viomycin. Tubercle 58:29–34. (1977). DOI: https://doi.org/10.1016/S0041-3879(77)80007-X

Morse W. C., Sproat E. F., Arrington C. W and Hawkins J. A. M. tuberculosis in vitro susceptibility and serum level experiences with capreomycin. Ann. N. Y. Acad. Sci. 135:983–988. (1966). DOI: https://doi.org/10.1111/j.1749-6632.1966.tb45539.x

Zhang, Y and Mitchison, D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis.7(1):6-21. (2003).

Alahari, A., Alibaud, L., Trivelli, X., et al. Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in Mycobacterium tuberculosis. Mol. Microbiol. 71, 1263–1277. (2009). DOI: https://doi.org/10.1111/j.1365-2958.2009.06604.x

Arbiser JL and Moschella SL. Clofazimine: a review of its medical uses and mechanisms of action. J Am Acad Dermatol.32:241-247. (1995) DOI: https://doi.org/10.1016/0190-9622(95)90134-5

Scior T, Raddatz G, Figueroa R, Roth HJ, and Bisswanger HA. Molecular modeling study on dapsone and sulfonamides comparing structures and properties with respect to anti-leprosy activity. J Mol Model. 3:332-337. (1997). DOI: https://doi.org/10.1007/s008940050047

Lowary, TL. d-ARABINOFURANOSIDES FROM MYCOBACTERIA: SYNTHESIS AND CONFORMATION. J. Carbohydr. Chem. 21: 691-722. (2002). DOI: https://doi.org/10.1081/CAR-120016487

Chain, E. B. Chemistry and biochemistry of antibiotics. Ann. Rev. of Biochem.27:167-222. (1958). DOI: https://doi.org/10.1146/annurev.bi.27.070158.001123

Simplício AL., Clancy JM and Gilmer JF. Prodrugs for Amines. Molecules.13: 519-547. (2008). DOI: https://doi.org/10.3390/molecules13030519

Phetsuksiri, B., Jackson, M., Scherman, H. et al. Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis. J. Biol. Chem. 278: 53123–53130. (2003). DOI: https://doi.org/10.1074/jbc.M311209200

Nomoto S, Teshima T, Wakamiya T and Shiba T. The revised structure of capreomycin. J. Antibiot.30:955-959. (1977). DOI: https://doi.org/10.7164/antibiotics.30.955

Zhang, Y., and Yew, W. W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuber. Lung Dis. 13:1320–1330. (2009).

Buriankova, K., Doucet-Populaire, F., Dorson, O. et al. Molecular Basis of Intrinsic Macrolide Resistance in the Mycobacterium tuberculosis Complex. Antimicrob. Agents Chemother. 48: 143–150. (2004). DOI: https://doi.org/10.1128/AAC.48.1.143-150.2004

Korduláková, J., Janin, Y.L., Liav, A. et al. Isoxyl Activation is Required for Bacteriostatic Activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother.51: 3824-3829. (2007). DOI: https://doi.org/10.1128/AAC.00433-07

Maus CE, Plikaytis BB and Shinnick TM. Molecular analysis of crossresistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 49:3192–3197. (2005). DOI: https://doi.org/10.1128/AAC.49.8.3192-3197.2005

Published

2016-06-20

How to Cite

Previously licensed anti-mycobacterial drugs: a re-appraisal. (2016). Journal of Zankoy Sulaimani - Part A, 18(2), 173-196. https://doi.org/10.17656/jzs.10513