Construction of Local Isolates of Cyanobacteria for Ethanol Production.

Authors

  • Payam Bayazeed Hasan Faculty of Science and Science Education, University of Sulaimani, Qliasan, Sulaimani, Kurdistan Region, Iraq. Author
  • Dlnya Asad Mohamad Faculty of Science and Science Education, University of Sulaimani, Qliasan, Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10517

Keywords:

Cyanobacteria, Synechococcus, Ethanol, Sulaimani

Abstract

Cyanobacteria can use solar energy and convert carbon dioxide into biofuel molecules in one single biological system. In this research, Synechococcus sp. was isolated from Saray Subhan Agha fresh water, a pure culture of Synechococcus was obtained by several subculturing on BG11 media. For the production of ethanol by Synechococcus sp. pyruvate decarboxylase (PDC) and alcohol dehydrogenseII (ADH II), genes from Zymomonas mobilis ATCC (29191), were amplified by PCR and cloned into the pSyn_1⁄D-TOPO® Vector. The Synechococcus and Synechococcus elongates transformed with constructed vector (pSyn_1⁄D-TOPO®) that harboring the two ethanol fermenting genes. The transformation was performed using a double homologous recombination system to integrate the PDC and ADHII genes into the local isolates of Synechococcus sp. and Synechococcus elongatus chromosome under the control cyanobacterial weak constitutive nickel inducible promoter. The recombinant Synechococcus cells grow in different concentrations of NiSO4 (1, 2.5, 5, 7.5, 10) μM in BG11 media, under different temperature (15, 30, 45)  ̊C and different light intensity (10, 50, 150) μE. The enzymatic ethanol assay kit was used to determine ethanol concentration produced by both recombinant Synechococcus sp. and recombinant Synechococcus elongatus. Highest ethanol concentration obtained by those cultures containing five μl NiSO4, which incubated under continues light of 50μE at 30 ̊C (Optimum um condition for ethanol production by recombinant Synechococcus cells). The amount of ethanol produced by local isolates of Synechococcus sp. was 0.00103 g/l, whereas for Synechococcus elongatus was 0.0138 g/l. The amount of ethanol produced by those Synechococcus cultures containing different concentrations of NiSO4 were incubated under continuous light of (10 and 150) μE and temperature of (15 and 45)  ̊C was less than those cultures were incubated under light of 50 μE and temperature of 30 ̊C.

References

Almarsdóttir, A. R. (2011). Thermophilic Ethanol and Hydrogen Production from Lignocellulosic Biomass. MSc. Thesis, University of Akureyri. Akureyri-Iceland.assignments, strains histories and properties of pure cultures of cyanobacteria.

Nagy, M. (2009). Biofuels from Lignin and Novel Biodiesel Analysis. Ph. D. Thesis. Georgia Institute of Technology, Atlanta- Georgia.

Quintana, N., Van der Kooy, F., Van de Rhee, M.D., Voshol, G. P., and Verpoorte R. (2011). Renewable Energy from Cyanobacteria: Energy Production Optimization by Metabolic Pathway Engineering. PubMed Central®,91(3): 471–490. DOI: https://doi.org/10.1007/s00253-011-3394-0

Lu, X. (2010). A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology advances,28(6), 742-746. DOI: https://doi.org/10.1016/j.biotechadv.2010.05.021

Nogales, J., Gudmundsson, S., and Thiele, I. (2013). Toward Systems Metabolic Engineering in Cyanobacteria: Opportunities and Bottlenecks. Bioengineered, 4(3): 158 – 163. DOI: https://doi.org/10.4161/bioe.22792

Callieri, C., Corno, G., Caravati, E., Galafassi, S., Bottinelli, M., and Bertoni, R. (2007). Photosynthetic Characteristics and Diversity of Freshwater Synechococcus at two Depths during Different Mixing Conditions in a Deep Oligotrophic Lake. Journal of Limnology, 66(2): 81-89. DOI: https://doi.org/10.4081/jlimnol.2007.81

Perkins, F.O., Haas, L.W., Phillips, D.E., and Webb, K.L. ( 1981). Ultrastructure of a Marine Synechococcus Possessing Spinae. Canadian Journal of Microbiology, 27(3):318-29. DOI: https://doi.org/10.1139/m81-049

Deng, M. D., and Coleman, J. R. (1999). Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Applied and Environmental Microbiology, 65(2): 523-528. DOI: https://doi.org/10.1128/AEM.65.2.523-528.1999

Talarico, L. A., Gil, M. A., Yomano, L. P., Ingram, L. O., and Maupin-Furlow, J. A. (2005). Construction and Expression of an Ethanol Production Operon in Gram-positive Bacteria. Microbiology, 151(12), 4023-4031. DOI: https://doi.org/10.1099/mic.0.28375-0

Wang, B., Wang, J., Zhang, W., and Meldrum, D. R. (2012). Application of Synthetic Biology in Cyanobacteria and Algae. Frontiers in Microbiology, 3,1-15. DOI: https://doi.org/10.3389/fmicb.2012.00344

Dexter, J., and Fu, P. (2009). Metabolic Engineering of Cyanobacteria for Ethanol production. Energy & Environmental Science, 2(8): 857-864. DOI: https://doi.org/10.1039/b811937f

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd edition. Cold spring harbor laboratory press, NY.

Hardter, U., Luzhetska, M., Ebeling, S., nd Bechthold, A. (2012). Ethanol Production in Actinomycetes after Expression of Synthetic adhB and pdc. Open Biotechnology Journal, 6, 13-16. DOI: https://doi.org/10.2174/1874070701206010013

Bookless, N., Hartley, B., Baghaei-yazdi, N., and Javed, M. (2007). Fermentation Process for the Production of Ethanol.,: World Intellectual Property Organization. WIPO Patent No. 2007110592

Gold, R. S., Meagher, M. M., Tong, S., Hutkins, R. W., and Conway, T. (1996). Cloning and Expression of the Zymomonas mobilis “production of ethanol” Genes in Lactobacillus casei. Current Microbiology, 33(4): 256-260. DOI: https://doi.org/10.1007/s002849900109

Casali, N., and Preston, A. (2003). E. coli Plasmid Vectors: Methods and Applications. Human Press; 235. DOI: https://doi.org/10.1385/1592594093

Daniell, H., and McFadden, B. A. (1986). Characterization of DNA Uptake by the Cyanobacterium Anacystis nidulans. Molecular and General Genetics MGG, 204(2): 243-248. DOI: https://doi.org/10.1007/BF00425505

Lightfoot, D. A., Walters, D. E., and Wootton, J. C. (1988). Transformation of the Cyanobacterium Synechococcus PCC 6301 Using Cloned DNA. Journal of General Microbiology, 134(6): 1509-1514. DOI: https://doi.org/10.1099/00221287-134-6-1509

Golden, S. S., and Sherman, L. A. (1984). Optimal Conditions for Genetic Transformation of the Cyanobacterium Anacystis nidulans R2. Journal of Bacteriology, 158(1): 36-42. DOI: https://doi.org/10.1128/jb.158.1.36-42.1984

Chauvat, F., Astier, C., Vedel, F., and Joset-Espardellier, F. (1983). Transformation in the Cyanobacterium Synechococcus R2: improvement of efficiency; Role of the pUH24 plasmid. Molecular and General Genetics MGG,191 (1): 39-45. DOI: https://doi.org/10.1007/BF00330887

Shestakove, S. V., Karbysheva , E. A. and Elanskaya, I. V. (1982). The nature of damage in mutants of Anacystis nidulans deficient in genetic transformation. Genetika 18, 1271-1275.

Los, D. A., Zorina, A., Sinetova, M., Kryazhov, S., Mironov, K., and Zinchenko, V. V. (2010). Stress Sensors and Signal Transducers in Cyanobacteria. Sensors,10 (3): 2386-2415. DOI: https://doi.org/10.3390/s100302386

Thiel, T. (1995). Genetic Analysis of Cyanobacteria, p. 581–611. In D. A. Bryant (ed.), The molecular biology of cyanobacteria. Kluwer Academic Press, Dordrecht, The Netherlands. DOI: https://doi.org/10.1007/978-94-011-0227-8_19

Published

2016-06-20

How to Cite

Construction of Local Isolates of Cyanobacteria for Ethanol Production. (2016). Journal of Zankoy Sulaimani - Part A, 18(2), 231-242. https://doi.org/10.17656/jzs.10517

Most read articles by the same author(s)

<< < 67 68 69 70 71 72 73 74 75 > >>