In vitro Cytotoxic Activity of Some Fecal Filtrates

Authors

  • Karokh Ali Khdir Biology Department, College of Education, University of Sulaimani, Kurdistan Region, Iraq. Author
  • Bahrouz Mahmood Al-Jaff Biology Department, College of Education, University of Sulaimani, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10790

Keywords:

Fecal filtrate, Mixed fermentation, Cytotoxic activity, Cervical cancer cells

Abstract

Animal feces have been studied and recognized as a crucial resource for exploring and discovering new novel bioactive compounds produced by host, microbiota, or host- microbiota interaction that may have therapeutic importance. To investigate the cytotoxic effect of human (healthy and colorectal cancer), dog, and cow fecal filtrates that serves as natural bioreactors. The cytotoxic activity was calculated as inhibitory concentration (IC50) based on the percentage of % viability using MTT 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay for 4 crude cell-free fecal filtrates and their Sephadex G100 fractions in vitro against HeLa human cervical cancer cell line. The optical densities (OD) of the fractions were checked at wavelength of 280 nm and considered in the assay rather than cytotoxic active compound concentrations.  Cytotoxic activity of each crude fecal filtrate appeared to be dose-dependent (P<0.001) and less active than 40-400 μg/ml 5-flourouracil (5-FU). IC50 for dog, cow, healthy human, colorectal fecal filtrates, and 5-FU were 442.64 ± 23.29, 1265 ± 35.8, 1715 ± 56.9, 400.76 ± 32 and 134.33 ± 3.29 μg/ml respectively. Out of 11 dog fecal filtrate fractions, 4 fractions (F4, F5, F6 and F7) were within IC50 range. Out of 10 cow fecal filtrate fractions, 3 fractions (F3, F5 and F6) were within IC50 range. Out of 11 healthy human fecal filtrate fractions, 2 fractions (F3 and F4) were within IC50 range. Out of 12 colorectal fecal filtrate fractions; 4 fractions (F2, F3, F4 and F6) were within IC50 range against HeLa cells. The crude fecal filtrates and their fractions were with apparent cytotoxic activity showed that the colorectal patients and dogs’ fecal filtrates have higher cytotoxic activity followed by cows and then the healthy humans. This step could be a start for identifying compounds responsible for cytotoxic activity in hope to explore new medicine with therapeutic activity against cancer.

References

Mann, J., “Natural products in cancer chemotherapy: past, present and future.” Nature Reviews Cancer. Vol. 2, No. 2, pp.143-148. (2002). DOI: https://doi.org/10.1038/nrc723

Rose, C., et al., "The characterization of feces and urine: a review of the literature to inform advanced treatment technology.” Critical reviews in environmental science and technology. Vol. 45, No. 17, pp. 1827-1879. (2015). DOI: https://doi.org/10.1080/10643389.2014.1000761

Heaton, K.W., et al., "Defecation frequency and timing, and stool form in the general population: a prospective study". Gut. Vol. 33, No. 6, pp. 818-824. (1992). DOI: https://doi.org/10.1136/gut.33.6.818

Simpson, J.M., et al., "Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber". Microbial ecology. Vol. 44, No. 2, pp. 186-197. (2002). DOI: https://doi.org/10.1007/s00248-002-0001-z

Achour, L., et al., "Faecal bacterial mass and energetic losses in healthy humans and patients with a short bowel syndrome". European journal of clinical nutrition. Vol. 61, No. 2, pp. 233. (2007). DOI: https://doi.org/10.1038/sj.ejcn.1602496

Leser, T.D. and L. Mølbak, "Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host". Environmental microbiology. Vol. 11, No 9, pp. 2194-2206. (2009). DOI: https://doi.org/10.1111/j.1462-2920.2009.01941.x

Liang, C., K.C. Das, and R.W. McClendon, "The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend". Bioresource technology. Vol. 86, No. 2, pp. 131-137. (2003). DOI: https://doi.org/10.1016/S0960-8524(02)00153-0

Guendouz, J., et al., "High-solids anaerobic digestion: comparison of three pilot scales". Water Science and Technology. Vol. 58, No. 9, pp. 1757-1763. (2008). DOI: https://doi.org/10.2166/wst.2008.521

Aroniadis, O.C. and L.J. Brandt, "Fecal microbiota transplantation: past, present and future". Current opinion in gastroenterology. Vol. 29, No. 1, pp. 79-84. (2013). DOI: https://doi.org/10.1097/MOG.0b013e32835a4b3e

Ryan, R.W., I.R. Kwasnik, and R.C. Tilton, "Rapid detection of Clostridium difficile toxin in human feces". Journal of clinical microbiology. Vol.12, No. 6, pp. 776-779. (1980). DOI: https://doi.org/10.1128/jcm.12.6.776-779.1980

Cover, T.L., G.I. Perez-Perez, and M.J Blaser, "Evaluation of cytotoxic activity in fecal filtrates from patients with Campylobacter jejuni or Campylobacter coli enteritis". FEMS microbiology letters. Vol. 70, No. 3, pp. 301-304. (1990). DOI: https://doi.org/10.1111/j.1574-6968.1990.tb13993.x

Ferreira, C.E.. V. Nakano and M.L. Avila-Campos, "Cytotoxicity and antimicrobial susceptibility of Clostridium difficile isolated from hospitalized children with acute diarrhea". Anaerobe. Vol.10, No. 3, pp. 171-177. (2004). DOI: https://doi.org/10.1016/j.anaerobe.2004.02.003

Gullikson, G.W., W.S. Cline. V. Lorenzsonn, L. Benz, W.A. Olsen, and P. Bass, "Effects of anionic surfactants on hamster small intestinal membrane structure and function: relationship to surface activity". Gastroenterology. Vol. 73, No.3, pp. 501-511. (1977). DOI: https://doi.org/10.1016/S0016-5085(19)32131-6

Rafter, J.J., P. Child, A.M. Anderson, R. Alder. V. Eng, and W.R. Bruce, "Cellular toxicity of fecal water depends on diet". The American journal of clinical nutrition. Vol. 45, No. 3, pp. 559-563. (1987). DOI: https://doi.org/10.1093/ajcn/45.3.559

Davis, C.D. and J.A. Milner, "Gastrointestinal microflora, food components and colon cancer prevention". The Journal of nutritional biochemistry. Vol. 20, No. 10, pp. 743-752. (2009). DOI: https://doi.org/10.1016/j.jnutbio.2009.06.001

Mahmud, A., "An investigation of the relationship between dietary fiber, fecal bacterial composition, and colon cancer." Ph.D. dissertation, Carleton University, Ottawa, Canada. (2012).

Ley, R.E., et al., "Evolution of mammals and their gut microbes". Science. Vol. 320, No. 5883, pp. 1647-1651. (2008). DOI: https://doi.org/10.1126/science.1155725

Arnison, P.G., et al., "Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature". Natural product reports. Vol. 30, No. 1, pp. 108-160. (2013).

Donia, M.S., et al., "A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics". Cell. Vol. 158, No. 6, pp. 1402-1414. (2014). DOI: https://doi.org/10.1016/j.cell.2014.08.032

Dan. V.M. and R. Sanawar, "Anticancer agents from microbes". In Bioresources and Bioprocess in Biotechnology. pp. 171-184. (2017). DOI: https://doi.org/10.1007/978-981-10-4284-3_7

Supaphol, S., et al., "Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste". Bioresource technology. Vol. 102, No. 5, pp. 4021-4027. (2011). DOI: https://doi.org/10.1016/j.biortech.2010.11.124

Gomathi, M. and P. Thangaraj, "A computer aided diagnosis system for lung cancer detection using support vector machine". American Journal of Applied Sciences. Vol. 7, No. 12, pp. 1532. (2010). DOI: https://doi.org/10.3844/ajassp.2010.1532.1538

Bray, F., et al., "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries". CA: a cancer journal for clinicians. Vol. 68, No. 6, pp. 394-424. (2018). DOI: https://doi.org/10.3322/caac.21492

Rutledge, P.J. and G.L. Challis, "Discovery of microbial natural products by activation of silent biosynthetic gene clusters". Nature reviews microbiology. Vol. 13, No. 8, pp. 509-523. (2015). DOI: https://doi.org/10.1038/nrmicro3496

Newman, D.J., G.M. Cragg, and K.M. Snader, "The influence of natural products upon drug discovery". Natural product reports. Vol. 17, No. 3, pp. 215-234. (2000). DOI: https://doi.org/10.1039/a902202c

Pettit, R.K., "Mixed fermentation for natural product drug discovery". Applied microbiology and biotechnology. Vol. 83, No. 1, pp. 19-25. (2009). DOI: https://doi.org/10.1007/s00253-009-1916-9

Marmann, A., et al., "Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms". Marine drugs. Vol. 12, No. 2, pp. 1043-1065. (2014). DOI: https://doi.org/10.3390/md12021043

Zhou, Y., et al., "Alkaloids from the Sponge‐Associated Fungus Aspergillus spp". European Journal of Organic Chemistry. Vol. 2013, No. 5, pp. 894-906. (2013). DOI: https://doi.org/10.1002/ejoc.201201220

Louie, T. and P.C. Adams, "Nature’s therapy for recurrent Clostridium difficile diarrhea". Canadian Journal of Gastroenterology and Hepatology. Vol. 22, No. 5, pp. 455-456. (2008). DOI: https://doi.org/10.1155/2008/357905

Lozupone, C.A., et al., "Diversity, stability and resilience of the human gut microbiota". Nature. Vol. 489, No, 7415, pp. 220. (2012). DOI: https://doi.org/10.1038/nature11550

Malla, S., et al., "Limitations in doxorubicin production from Streptomyces peucetius". Microbiological research. Vol. 165, No. 5, pp. 427-435. (2010). DOI: https://doi.org/10.1016/j.micres.2009.11.006

Encalada, M.A., et al., "Anti-proliferative effect of Melissa officinalis on human colon cancer cell line". Plant foods for human nutrition. Vol. 66, No. 4, pp. 328-334. (2011). DOI: https://doi.org/10.1007/s11130-011-0256-y

Senthilraja, P. and K. Kathiresan, "In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF-7 cell lines study of Marine Yeast". Journal of Applied Pharmaceutical Science. Vol. 5, No. 3, pp. 80-84. (2015). DOI: https://doi.org/10.7324/JAPS.2015.50313

Ó’Fágáin, C., P.M. Cummins, and B.F. O’Connor, "Gel-filtration chromatography". In Protein Chromatography. Humana Press. pp. 25-33. (2011). DOI: https://doi.org/10.1007/978-1-60761-913-0_2

Healthcare, G.E., "Size exclusion chromatography: Principles and Methods". GE Healthcare. Handbooks, pp. 139. (2012).

Da Rocha, A.B., R.M. Lopes, and G. Schwartsmann, "Natural products in anticancer therapy". Current opinion in pharmacology. Vol. 1, No. 4, pp. 364-369. (2001). DOI: https://doi.org/10.1016/S1471-4892(01)00063-7

Frey, J.C., et al., "Fecal bacterial diversity in a wild gorilla". Applied and. Environmental Microbiology. Vol. 72, No. 5, pp. 3788-3792. (2006). DOI: https://doi.org/10.1128/AEM.72.5.3788-3792.2006

Donaldson, G.P., S.M. Lee, and S.K. Mazmanian, "Gut biogeography of the bacterial microbiota". Nature Reviews Microbiology. Vol. 14, No. 1, pp. 20. (2016). DOI: https://doi.org/10.1038/nrmicro3552

Rowland, I., et al., "Gut microbiota functions: metabolism of nutrients and other food components". European journal of nutrition. Vol. 57, No. 1, pp. 1-24. (2018). DOI: https://doi.org/10.1007/s00394-017-1445-8

Nützmann, H.W., et al., "Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation". Proceedings of the National Academy of Sciences. Vol. 108, No. 34, pp. 14282-14287. (2011). DOI: https://doi.org/10.1073/pnas.1103523108

Salmon, I. and A.T. Bull, "Mixed-culture fermentations in industrial microbiology". Current perspectives in microbial ecology, pp. 656–662. (1984).

Degenkolb, T., et al., "Formation of new lipoaminopeptides, acremostatins A, B, and C, by co-cultivation of Acremonium sp. Tbp-5 and Mycogone rosea DSM 12973". Bioscience, biotechnology, and biochemistry. Vol. 66, No. 4, pp. 883-886. (2002). DOI: https://doi.org/10.1271/bbb.66.883

Knight. V., et al., "Diversifying microbial natural products for drug discovery". Applied Microbiology and Biotechnology. Vol. 62, No. 5-6, pp. 446-458. (2003). DOI: https://doi.org/10.1007/s00253-003-1381-9

Zwielehner, J., et al., "Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting". PloS one. Vol. 6, No. 12, p. e28654. (2011). DOI: https://doi.org/10.1371/journal.pone.0028654

Nourissat, A., et al., "Relationship between nutritional status and quality of life in patients with cancer". European journal of cancer. Vol. 44, No. 9, pp. 1238-1242. (2008). DOI: https://doi.org/10.1016/j.ejca.2008.04.006

Netzker, T., et al., "Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters". Frontiers in microbiology. Vol. 6, pp. 299. (2015). DOI: https://doi.org/10.3389/fmicb.2015.00299

Oh, D.C., et al., "Libertellenones A–D: Induction of cytotoxic diterpenoid biosynthesis by marine microbial competition". Bioorganic & medicinal chemistry. Vol. 13, No. 17, pp. 5267-5273. (2005). DOI: https://doi.org/10.1016/j.bmc.2005.05.068

Zuck, K.M., S. Shipley, and D.J. Newman, "Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius". Journal of natural products. Vol. 74, No. 7, pp. 1653-1657. (2011). DOI: https://doi.org/10.1021/np200255f

Pettit, R.K., et al., "Isolation of human cancer cell growth inhibitory, antimicrobial lateritin from a mixed fungal culture". Planta medica. Vol. 76, No. 05, pp. 500-501. (2010). DOI: https://doi.org/10.1055/s-0029-1240617

Kennedy, E., et al., "Cytotoxic effects of children's faeces: relation to diarrhoea due to Clostridium difficile and other enteric pathogens". Annals of tropical paediatrics. Vol. 11, No. 2, pp. 107-112. (1991). DOI: https://doi.org/10.1080/02724936.1991.11747487

Muegge, B.D., et al., "Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans". Science. Vol. 332, No. 6032, pp. 970-974. (2011). DOI: https://doi.org/10.1126/science.1198719

Doroghazi, J.R., et al., "A roadmap for natural product discovery based on large-scale genomics and metabolomics". Nature chemical biology. Vol. 10, No. 11, pp. 963. (2014). DOI: https://doi.org/10.1038/nchembio.1659

Clapper, W.E. and G.H. Meade., "Normal flora of the nose, throat, and lower intestine of dogs". Journal of bacteriology. Vol. 85, No. 3, pp. 643-648. (1963). DOI: https://doi.org/10.1128/jb.85.3.643-648.1963

Dowd, S.E., et al., "Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) ". BMC microbiology. Vol. 8, No. 1, pp. 125. (2008). DOI: https://doi.org/10.1186/1471-2180-8-125

Vargo, D., M. Moskovitz, and M.H. Floch, "Faecal bacterial flora in cancer of the colon". Gut. Vol. 21, No. 8, pp. 701-705. (1980). DOI: https://doi.org/10.1136/gut.21.8.701

Meng, C., et al., "Human gut microbiota and gastrointestinal cancer". Genomics, proteomics & bioinformatics. Vol. 16, No. 1, pp. 33-49. (2018). DOI: https://doi.org/10.1016/j.gpb.2017.06.002

Bérdy, J., "Bioactive microbial metabolites". The Journal of antibiotics. Vol. 58, No. 1, pp. 1. (2005). DOI: https://doi.org/10.1038/ja.2005.1

Newman, D.J. and G.M. Cragg, "Natural products as sources of new drugs over the last 25 years". Journal of natural products. Vol. 70, No. 3, pp. 461-477. (2007). DOI: https://doi.org/10.1021/np068054v

Olano, C., C. Méndez, and J.A. Salas, "Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis". Natural product reports. Vol. 26, No. 5, pp. 628-660. (2009). DOI: https://doi.org/10.1039/b822528a

Invitrogen, G., "Cell culture basics". Life technologies, Gibco. pp. 16-18. (2014).

Gutiérrez-Hoya, A., et al., "Cervical Cancer Cells Express Markers Associated with Immunosurveillance". Journal of immunology research. Vol. 2019, pp. 10-20. (2019). DOI: https://doi.org/10.1155/2019/1242979

Lévi, F., et al., "Oxaliplatin". Clinical pharmacokinetics. Vol. 38, No. 1, pp. 1-21. (2000). DOI: https://doi.org/10.2165/00003088-200038010-00001

Dhillon, S. and L.J. Scott, "Capecitabine". Drugs. Vol. 67, No. 4, pp. 601-610. (2007). DOI: https://doi.org/10.2165/00003495-200767040-00010

Gallo, R.L. and L.V. Hooper, "Epithelial antimicrobial defense of the skin and intestine". Nature Reviews Immunology. Vol. 12, No. 7, pp. 503. (2012). DOI: https://doi.org/10.1038/nri3228

Abt, M.C. and E.G. Pamer, "Commensal bacteria mediated defenses against pathogens". Current opinion in immunology. Vol. 29, pp. 16-22. (2014). DOI: https://doi.org/10.1016/j.coi.2014.03.003

Garcia-Gutierrez, E., et al., "Gut microbiota as a source of novel antimicrobials". Gut microbes. Vol. 10, No. 1, pp. 1-21. (2019). DOI: https://doi.org/10.1080/19490976.2018.1455790

Kaur, S. and S. Kaur, "Bacteriocins as potential anticancer agents". Frontiers in pharmacology. Vol. 6, pp. 272. (2015). DOI: https://doi.org/10.3389/fphar.2015.00272

Jiang, Y., et al., "Diversity and bioactivity of cultivable animal fecal actinobacteria". Advances in Microbiology. Vol. 3, No. 01, pp. 1. (2013). DOI: https://doi.org/10.4236/aim.2013.31001

Ding, N., et al., "Bafilomycins and odoriferous sesquiterpenoids from Streptomyces albolongus isolated from Elephas maximus feces". Journal of natural products. Vol. 79, No. 4, pp. 799-805. (2016). DOI: https://doi.org/10.1021/acs.jnatprod.5b00827

Lee, D.K., et al., "Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines". BMC cancer. Vol. 8, No. 1, pp. 310. (2008). DOI: https://doi.org/10.1186/1471-2407-8-310

López de Felipe, F., B. de Las Rivas, and R. Muñoz, "Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development". Frontiers in microbiology. Vol. 5, pp. 684. (2014). DOI: https://doi.org/10.3389/fmicb.2014.00684

Zitvogel, L., et al., "Anticancer effects of the microbiome and its products". Nature Reviews Microbiology. Vol. 15, No. 8, pp. 465. (2017). DOI: https://doi.org/10.1038/nrmicro.2017.44

Hirayama, K. and J. Rafter, "The role of probiotic bacteria in cancer prevention". Microbes and infection. Vol. 2, No. 6, pp. 681-686. (2000). DOI: https://doi.org/10.1016/S1286-4579(00)00357-9

Published

2020-06-20

How to Cite

In vitro Cytotoxic Activity of Some Fecal Filtrates. (2020). Journal of Zankoy Sulaimani - Part A, 22(1), 249-264. https://doi.org/10.17656/jzs.10790