Hematological Variations Among SARS-COV-2 Patients Attending Zhyan Hospital at Ranya District, Iraq


  • Aesha Hassan Ahmed Department of Medical Laboratory Science, College of Science, Raparin University, Sulaimani, Kurdistan Region, Iraq. Author
  • Sulaf Mustafa Mohammed Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq. Author




Severity COVID-19, SARS-COV-2, Hematological parameters, Clinical characteristic, Complete blood count


Millions of people throughout the world have been impacted by the global pandemic virus SARS-COV-2. There is a paucity of information on the impact of SARS-COV-2 on hematological parameters in Kurdistan. To assess the effect of several physiological and pathological factors on the severity of the disease, this study looks at the hematological parameters among SARS-COV-2 patients hospitalized at Zhyan Hospital in Ranya, Kurdistan Region, Iraq. 200 cases were recruited for this study between 28th of September and 31st of December 2021. 50 negative people made up the control group, while 150 SARS-COV-2 patients mild, severe, and critical cases formed the study's three main study groups. The patients in the three groups were compared in terms of their hematological characteristics. The study revealed that compared to controls, SARS-COV-2 patients had significantly increased levels of white blood cells, granulocytes, platelet-large cell ratio, monocyte, red distribution width, platelet distribution width, platelet and decreased lymphocytes. WBC count, granulocyte, platelet-large cell ratio, monocyte, red distribution width, and platelet distribution width were all considerably higher in the critical group of SARS-COV-2 patients than in the severe and mild groups. Additionally, critical patients had considerably higher levels of lymphocytopenia and thrombocytopenia than severe and mild patient groups. Additionally, the critical group contained the highest proportion of SARS-COV-2 patients with concomitant conditions such as hypertension, diabetes and cardiovascular disease. The illness severity of SARS-COV-2 infection is nearly correlated with age, comorbidity, and levels of WBC, Lymphocyte, Granulocyte, Platelets, and P-LCR. Additionally, our results based on basic laboratory data may be useful in early illness severity prediction, and to improve the SARS-COV-2 patient survival rate.


Martinez Mesa, A., Cabrera César, E., Martín-Montañez, E., Sanchez Alvarez, E., Lopez, P. M., Romero-Zerbo, Y., Garcia-Fernandez M., & Velasco-Garrido, J. L. (2021). Acute lung injury biomarkers in the prediction of COVID-19 severity: Total thiol, ferritin and lactate dehydrogenase. Antioxidants, 10(8), 1221.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao Z., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, Z., Wang, D., Xu, W., Wu, G., Gao, G., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine, 372(7), 27-33.

Gong, J., Dong, H., Xia, Q.-S., Huang, Z.-y., Wang, D.-k., Zhao, Y., Wang, D.-K., Zhao, Y., Liu, W.-H., Tu, S.-H., Zhang, M.-M., Wang, Q., & Lu, F.-E. (2020). Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: a retrospective study. BMC Infectious Diseases, 20(1), 1-7.

Frater, J. L., Zini, G., d’Onofrio, G., & Rogers, H. J. (2020). COVID‐19 and the clinical hematology laboratory. International Journal of Laboratory Hematology, 42(Suppl. 1), 11-18.

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.-Q., Wang, Q., & Miao, H. (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction and Targeted Therapy, 5(1), 1-3.

Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011-1033.

Long, C., Xu, H., Shen, Q., Zhang, X., Fan, B., Wang, C., Zeng, B., Li, Z., Li, X., & Li, H. (2020). Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? European Journal of Radiology, 126, 108961.

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033-1034.

Bangash, M. N., Patel, J., and Parekh, D. (2020). COVID-19 and the liver: little cause for concern. The lancet Gastroenterology & Hepatology, 5(6), 529-530.

Driggin, E., Madhavan, M. V., Bikdeli, B., Chuich, T., Laracy, J., Biondi-Zoccai, G., Brown, T. S., Nigoghossian, C. D., Zidar, D. A., Haythe, J., Brodie, D. Beckman, J. A., Kirtane, J., Stone G. W., Krumholz, H. A., & Parikh, S. A. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75(18), 2352-2371.

Zheng, Y., Zhang, Y., Chi, H., Chen, S., Peng, M., Luo, L., Chen, L., Li, J., Shen, B., & Wang, D. (2020). The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study. Clinical Chemistry and Laboratory Medicine (CCLM), 58(7), 1106-1115.

Palladino, M. (2021). Complete blood count alterations in COVID-19 patients: A narrative review. Biochemia medica, 31(3), 30501.

Imam, Z., Odish, F., Gill, I., O’Connor, D., Armstrong, J., Vanood, A., Ibironke, O., Hanna, A., Ranski, A., & Halalau, A. (2020). Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID‐19 patients in Michigan, United States. Journal of Internal Medicine, 288(4), 469-476.

Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., Sun, R., Tian, Z., Xu, X., & Wei, H. (2020). Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review, 7(6), 998-1002.

Baradaran, A., Ebrahimzadeh, M. H., Baradaran, A., & Kachooei, A. R. (2020). Prevalence of comorbidities in COVID-19 patients: a systematic review and meta-analysis. Archives of Bone and Joint Surgery, 8(Suppl 1), 247.

Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5), 475-481.

Chanana, N., Palmo, T., Sharma, K., Kumar, R., Graham, B. B., & Pasha, Q. (2020). Sex-derived attributes contributing to SARS-CoV-2 mortality. American Journal of Physiology-Endocrinology and Metabolism, 319(3), E562-E567.

Conti, P., & Younes, A. (2020). Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents, 34(2), 339-343.

Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q., & Zhu F.. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181-192.

Jara, A., Undurraga, E. A., González, C., Paredes, F., Fontecilla, T., Jara, G., Pizarro, A., Acevedo, J., Leo, K., Leon, F., Sans, C., Leighton, P., Suarez, P., Gracia-Escorza, H., & Araos, R. (2021). Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. New England Journal of Medicine, 385(10), 875-884.

Emami, A., Javanmardi, F., Pirbonyeh, N., & Akbari, A. (2020). Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Archives of academic emergency medicine, 8(1), e35.

de Lucena, T. M. C., da Silva Santos, A. F., de Lima, B. R., de Albuquerque Borborema, M. E., & de Azevêdo Silva, J. (2020). Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 597-600.

Balkissoon, R. (2020). Journal Club—Severe Acute Respiratory Syndrome Coronavirus-2: Impact on COPD Patients. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 7(4), 413–419.

Vardavas, C. I., & Nikitara, K. (2020). COVID-19 and smoking: A systematic review of the evidence. Tobacco induced diseases, 18(20).

Cai, G., Cui, X., Zhu, X., & Zhou, J. (2020). A hint on the COVID-19 risk: population disparities in gene expression of three receptors of SARS-CoV.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.

Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., Zhang, Q., Wu, J., Xu, L., Lu, S., Wang, B., Weng, Z., Han, C., Zhu, H., Zhou, R., Zhou, H., Chen, X., Ye, P., Zhu, B., Wang, L., Zhou, W., He, S., He, Y., Jie, S., Wei, P., Zhang, J., Lu, Y., Wang, W., Zhang, L., Li, L., Zhou, F., Wang, J., Dittmer, U., Lu, M., Hu, Y., Yang, D., & Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBio Medicine, 55(20), 102763.

Rabaan, A. A., Al-Ahmed, S. H., Garout, M. A., Al-Qaaneh, A. M., Sule, A. A., Tirupathi, R., Mutair, A. A., Alhumaid, S., Hasan, A., Dhawan, M., Tiwari, R., Sharun, K., Mohapatra, R. K., Mitra, S., Emran, T. B., Bilal, M., Singh, R., Alyami, S. A., Moni, M. A., & Dhama, K. (2021). Diverse immunological factors influencing pathogenesis in patients with COVID-19: a review on viral dissemination, immunotherapeutic options to counter cytokine storm and inflammatory responses. Pathogens, 10(5), 565.

Guzik, T. J., West, N. E., Black, E., McDonald, D., Ratnatunga, C., Pillai, R., & Channon, K. M. (2000). Vascular superoxide production by NAD (P) H oxidase: association with endothelial dysfunction and clinical risk factors. Circulation research, 86(9), e85-e90.

Bellan, M., Azzolina, D., Hayden, E., Gaidano, G., Pirisi, M., Acquaviva, A., Aimaretti, G., Aluffi Valletti, P., Angilletta, R., Arioli, R., Avanzi, G. C., Avino, G., Balbo, P. E., Baldon, G., Baorda, F., Barbero, E., Baricich, A., Barini, M., Barone-Adesi, F., Battistini, S., … Sainaghi, P. P. (2021). Simple parameters from complete blood count predict in-hospital mortality in COVID-19. Disease Markers, 2021.

Jiang, S. Q., Huang, Q. F., Xie, W. M., Lv, C., & Quan, X. Q. (2020). The association between severe COVID‐19 and low platelet count: evidence from 31 observational studies involving 7613 participants. British journal of haematology, 190(1), e29-e33.

Assinger, A. (2014). Platelets and infection–an emerging role of platelets in viral infection. Frontiers in immunology, 5, 649.

Bellan, M., Soddu, D., Zecca, E., Croce, A., Bonometti, R., Pedrazzoli, R., Sola, D., Rigamonti, C., Castello, L. M., Avanzi, G. C., Pirisi, M., & Sainaghi, P. P. (2020). Association between red cell distribution width and response to methotrexate in rheumatoid arthritis. Reumatismo, 72(1), 16-20.

Ramachandran, P., Gajendran, M., Perisetti, A., Elkholy, K. O., Chakraborti, A., Lippi, G., & Goyal, H. (2021). Red Blood Cell Distribution Width in Hospitalized COVID-19 Patients. Frontiers in Medicine, 8, 403.

Higgins, J. M., & Mahadevan, L. (2010). Physiological and pathological population dynamics of circulating human red blood cells. Proceedings of the National Academy of Sciences, 107(47), 20587-20592.

Wang, L., Duan, Y., Zhang, W., Liang, J., Xu, J., Zhang, Y., Wu, C., Xu, Y., & Li, H. (2020). Epidemiologic and clinical characteristics of 26 cases of COVID-19 arising from patient-to-patient transmission in Liaocheng, China. Clinical Epidemiology, 12, 387-391.

Mao, J., Dai, R., Du, R.-C., Zhu, Y., Shui, L.-P., & Luo, X.-H. (2021). Hematologic changes predict clinical outcome in recovered patients with COVID-19. Annals of hematology, 100(3), 675-689.

Khalid, A., Suliman, A. M., Abdallah, E. I., Abakar, M., Elbasheir, M. M., Muddathir, A. M., Aldakheel, F. M., Bin Shaya, A. S., Alfahed, A., Alharthi, N. S., Aloraini, G. S., Alenazi, M. M., & Waggiallah, H. A. (2022). Influence of COVID-19 on lymphocyte and platelet parameters among patients admitted to intensive care unit and emergency. European Review for Medical and Pharmacological Sciences, 26(7), 2579-2585.

Thomas, T., Stefanoni, D., Dzieciatkowska, M., Issaian, A., Nemkov, T., Hill, R. C., Francis, R. O., Hudson, K. E., Buehler, P. W., Zimring, J. C., Hod, E. A., Hansen, K. C., Spitalnik, S. L., & D'Alessandro, A. (2020). Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. Journal of Proteome Research, 19(11), 4455-4469.



How to Cite

Hematological Variations Among SARS-COV-2 Patients Attending Zhyan Hospital at Ranya District, Iraq. (2022). Journal of Zankoy Sulaimani, 24(2), 1-11. https://doi.org/10.17656/jzs.10876