Trivalent Metal Complexes of Rich-Hyrdoxy Schiff base Ligand: Synthesis, Characterization, DFT Calculations and Antimicrobial Activity

Authors

  • Hanar Q. Hassan Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Karzan A. Abdalkarim Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Dalia A. Abdul Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Aso H. Hasan Department of Chemistry, College of Science, University of Garmian, Bardesur Street 46021, Kalar, Kurdistan Region, Iraq. Author
  • Diary I. Tofiq Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Rebaz F. Hamarawf Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Shujahadeen B. Aziz Research and Development Center, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author
  • Kawan F. Kayani Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46001 Sulaymaniyah, Kurdistan Region, Iraq. Author

DOI:

https://doi.org/10.17656/jzs.10911

Keywords:

4,4'-oxydianiline, hydroxy-rich, Schiff base, heteroatom, trivalent metal complex, DFT, antibacterial

Abstract

The design of trivalent metal complexes involves choosing suitable ligands that can bind to the metal and confer the desired properties. In this study, novel trivalent metal complexes (TVMCs) of Ru, Fe, and Cr were synthesized from a newly developed hydroxy-rich Schiff base ligand (LH2) derived from 4,4'-oxydianiline with 2, 4-dihydroxybenzaldehyde, which is referred to as N, N`-bis [ 2,4-dihydroxyphenyl-methylidene] 4,4'-oxydianiline (LH2). The ligand synthesis was performed using reflux without a catalyst in ethanol. The products underwent thorough characterization experimentally by various techniques such as: FT-IR, 1H-NMR, 13C-NMR, Powder XRD, elemental analysis, UV-Visible, conductivity, magnetic susceptibility, and thermal gravimetric analysis. The molar conductance measurements suggest that the complexes are non-electrolytes and do not contain conductive species outside the coordination sphere. Thus they can be formulated as [MLCl(H2O)].nH2O. Magnetic moment and electronic spectral studies confirmed that all complexes exhibit octahedral geometry around the metal ion. Furthermore, density functional theory (DFT) calculations were performed theoretically to investigate the structures, frontier molecular orbitals (HOMO and LUMO), molecular electrostatic potential (MEP), and electron localization function (ELF) for all complexes, utilizing the Gaussian09 software and the B3LYP/6-311+G(d, p) level. In vitro experiments were conducted to evaluate the antibacterial activity of the compounds against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial species, using the agar diffusion method. The results indicate that the Fe(III)-complex exhibits noteworthy inhibitory effects on both Gram-positive and Gram-negative bacteria, with a maximum inhibition zone.

References

K. A. Abdalkarim et al., (2021, ). ‘Synthesis of Hg metal complex and its application to reduce the optical

band gap of polymer’, Arab. J. Chem., vol. 14, no. 7, p. 103215, doi: 10.1016/j.arabjc.2021.103215.

B. Murukan and K. Mohanan, (2007). ‘Synthesis, characterization and antibacterial properties of some

trivalent metal complexes with [(2-hydroxyl-1-naphthaldehyde)-3-isatin]-bishydrazone’, J. Enzyme Inhib.

Med. Chem., vol. 22, no. 1, pp. 65–70, doi: 10.1080/14756360601027373. DOI: https://doi.org/10.1080/14756360601027373

Z. A. Taha et al., (2012). ‘Structural, luminescence and biological studies of trivalent lanthanide

complexes with N,N′-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand’, J.

Lumin., vol. 132, no. 11, pp. 2832–2841, doi: 10.1016/j.jlumin.2012.05.041. DOI: https://doi.org/10.1016/j.jlumin.2012.05.041

H. Kargar et al., (2022). ‘Spectroscopic investigation, molecular structure, catalytic activity with

computational studies of a novel Pd(II) complex incorporating unsymmetrical tetradentate Schiff base

ligand’, Inorg. Chem. Commun., vol. 142, p. 109697, doi: https://doi.org/10.1016/j.inoche.2022.109697. DOI: https://doi.org/10.1016/j.inoche.2022.109697

S. H. Sumrra et al., (2021). ‘Metal incorporated aminothiazole-derived compounds: Synthesis, density

function theory analysis, in vitro antibacterial and antioxidant evaluation’, R. Soc. Open Sci., vol. 8, no. 9,

doi: 10.1098/rsos.210910. DOI: https://doi.org/10.1098/rsos.210910

M. A. Malik et al., (2018). ‘Heterocyclic Schiff base transition metal complexes in antimicrobial and

anticancer chemotherapy’, Medchemcomm, vol. 9, no. 3, pp. 409–436, doi: 10.1039/c7md00526a. DOI: https://doi.org/10.1039/C7MD00526A

V. Ritleng et al., (2016). ‘Nickel N-Heterocyclic Carbene-Catalyzed C-Heteroatom Bond Formation, DOI: https://doi.org/10.1002/chin.201614260

Reduction, and Oxidation: Reactions and Mechanistic Aspects’, ACS Catal., vol. 6, no. 2, pp. 890–906, doi:

1021/acscatal.5b02021.

Y. Liu et al., (2017). ‘Inorganic anion-dependent assembly of zero-, one-, two- and three-dimensional

Cu(II)/Ag(I) complexes under the guidance of the HSAB theory: Synthesis, structure, and magnetic

property’, J. Solid State Chem., vol. 246, no. November 2016, pp. 48–56, doi: 10.1016/j.jssc.2016.10.030. DOI: https://doi.org/10.1016/j.jssc.2016.10.030

R. G. Pearson, (1963). ‘Hard and Soft Acids and Bases’, J. Am. Chem. Soc., vol. 85, no. 22, pp. 3533–

, doi: 10.1021/ja00905a001. DOI: https://doi.org/10.1021/ja00905a001

R. D. Hancock and A. E. Martell, (1996). ‘Hard and soft acid-base behavior in aqueous solution: Steric

effects make some metal ions hard a quantitative scale of hardness-softness for acids and bases’, Journal of

Chemical Education, vol. 73, no. 7. pp. 654–661, doi: 10.1021/ed073p654. DOI: https://doi.org/10.1021/ed073p654

E. Langer et al., (2019). ‘Application of new modified Schiff base epoxy resins as organic coatings’, J.

Coatings Technol. Res., vol. 16, no. 4, pp. 1109–1120, doi: 10.1007/s11998-019-00185-7.

M. Murmu et al., (2019). ‘Amine cured double Schiff base epoxy as efficient anticorrosive coating DOI: https://doi.org/10.1016/j.molliq.2019.01.066

materials for protection of mild steel in 3.5% NaCl medium’, J. Mol. Liq., vol. 278, pp. 521–535, doi:

1016/j.molliq.2019.01.066.

K. Wang et al., (2022). ‘Iron complexes of [2+2] and [6+6] Schiff-base macrocycles derived from 2,2′- DOI: https://doi.org/10.1016/j.inoche.2022.109376

oxydianiline and their applications’, Inorg. Chem. Commun., vol. 139, no. January, p. 109376, doi:

1016/j.inoche.2022.109376.

C. Redshaw, (2017). ‘Use of metal catalysts bearing schiff base macrocycles for the ring opening

polymerization (ROP) of cyclic esters’, Catalysts, vol. 7, no. 5, doi: 10.3390/catal7050165. DOI: https://doi.org/10.3390/catal7050165

W. Yang et al., (2016). ‘Structural studies of Schiff-base [2 + 2] macrocycles derived from 2,2′-

oxydianiline and the ROP capability of their organoaluminium complexes’, Dalt. Trans., vol. 45, no. 30, pp.

–12005, doi: 10.1039/c6dt01997h. DOI: https://doi.org/10.1039/C6DT01997H

R. Muthusami et al., (2021). ‘Cu(II) Schiff base complex functionalized mesoporous silica nanoparticles

as an efficient catalyst for the synthesis of questiomycin A and photo-Fenton-like rhodamine B degradation’,

J. Solid State Chem., vol. 302, no. July, p. 122429, doi: 10.1016/j.jssc.2021.122429. DOI: https://doi.org/10.1016/j.jssc.2021.122429

Z. Uyar et al., (2017). ‘Synthesis, Characterization, and Cytotoxic Activities of a Schiff Base Ligand and

Its Binuclear Copper(II) and Manganese(III) Complexes’, J. Turkish Chem. Soc. Sect. A Chem., vol. 4, no.

, pp. 963–980, doi: 10.18596/jotcsa.329108. DOI: https://doi.org/10.18596/jotcsa.329108

H. Keypour et al., (2013). ‘Synthesis, spectral characterization, structural investigation and antimicrobial

studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate

N2O4 Schiff base ligand derived from salicylaldehyde’, J. Mol. Struct., vol. 1032, pp. 62–68, doi:

1016/j.molstruc.2012.07.056. DOI: https://doi.org/10.1088/1475-7516/2012/10/056

G. Kumar et al., (2010). ‘Synthesis, physical characterization and antimicrobial activity of trivalent metal

Schiff base complexes’, J. Serbian Chem. Soc., vol. 75, no. 5, pp. 629–637, doi: 10.2298/JSC090704037K. DOI: https://doi.org/10.2298/JSC090704037K

A. Fatoni et al., (2018). ‘Synthesis and characterization of chitosan linked by methylene bridge and schiff DOI: https://doi.org/10.22146/ijc.25866

base of 4,4-diaminodiphenyl ether-vanillin’, Indones. J. Chem., vol. 18, no. 1, pp. 92–101, doi:

22146/ijc.25866.

A. A. Jarrahpour and M. Zarei, (2004). ‘Synthesis of 2-({[4-(4-{[(E)-1-(2-hydroxy-3-methoxyphenyl) DOI: https://doi.org/10.3390/M352

methylidene]amino}phenoxy)phenyl]imino}methyl)- 6 -methoxy phenol’, Molbank, vol. 87, no. M352, pp.

–2004,

E. Langer et al., (2019). ‘Application of new modified Schiff base epoxy resins as organic coatings’, J.

Coatings Technol. Res., vol. 16, no. 4, pp. 1109–1120, doi: 10.1007/s11998-019-00185-7. DOI: https://doi.org/10.1007/s11998-019-00185-7

E. Langer et al., (2014). ‘Self-stratifying coatings based on Schiff base epoxy resins’, J. Coatings

Technol. Res., vol. 11, no. 6, pp. 865–872, doi: 10.1007/s11998-014-9603-x. DOI: https://doi.org/10.1007/s11998-014-9603-x

M. Salavati-Niasari and M. Bazarganipour, (2007). ‘Effect of single-wall carbon nanotubes on direct

epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum(VI) complexes with bisbidentate Schiff-base containing aromatic nitrogen-nitrogen linkers’, J. Mol. Catal. A Chem., vol. 278, no.

–2, pp. 173–180, doi: 10.1016/j.molcata.2007.09.009. DOI: https://doi.org/10.1016/j.molcata.2007.09.009

Z. Parsaee and K. Mohammadi, (2017). ‘Synthesis, characterization, nano-sized binuclear nickel

complexes, DFT calculations and antibacterial evaluation of new macrocyclic Schiff base compounds’, J.

Mol. Struct., vol. 1137, pp. 512–523, doi: 10.1016/j.molstruc.2017.02.026. DOI: https://doi.org/10.1016/j.molstruc.2017.02.026

A. A. Nazarov et al., (2014). ‘Opening the lid on piano-stool complexes: An account of DOI: https://doi.org/10.1002/chin.201423232

ruthenium(II)earene complexes with medicinal applications’, J. Organomet. Chem., vol. 751, pp. 251–260,

doi: 10.1016/j.jorganchem.2013.09.016. DOI: https://doi.org/10.1016/j.jorganchem.2013.09.016

P. V. Anantha Lakshmi et al., (2008). ‘Synthesis and structural studies of first row transition metal

complexes of n-(2-nitro)-benzilidine-3-hydrazino quinoxaline-2-one’, Bull. Chem. Soc. Ethiop., vol. 22, no.

, pp. 385–390, doi: 10.4314/bcse.v22i3.61215. DOI: https://doi.org/10.4314/bcse.v22i3.61215

W. H. Mahmoud et al (2016). ‘Novel Schiff base ligand and its metal complexes with some transition

elements. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity’, Appl.

Organomet. Chem., vol. 30, no. 4, pp. 221–230, doi: 10.1002/aoc.3420. DOI: https://doi.org/10.1002/aoc.3420

A. Singh and P. Barman, (2021). Recent Advances in Schiff Base Ruthenium Metal Complexes: DOI: https://doi.org/10.1007/s41061-021-00342-w

Synthesis and Applications, vol. 379, no. 4. Springer International Publishing.

A. Çapan et al (2018). ‘Ru(III), Cr(III), Fe(III) complexes of Schiff base ligands bearing phenoxy

Groups: Application as catalysts in the synthesis of vitamin K3’, J. Saudi Chem. Soc., vol. 22, no. 6, pp.

–766, doi: 10.1016/j.jscs.2017.12.007. DOI: https://doi.org/10.1016/j.jscs.2017.12.007

J. Patole et al (2006). ‘Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents’,

Bioorganic Med. Chem. Lett., vol. 16, no. 6, pp. 1514–1517, doi: 10.1016/j.bmcl.2005.12.035. DOI: https://doi.org/10.1016/j.bmcl.2005.12.035

Y. Lu et al (2012). ‘Synthesis, structures, and urease inhibition of nickel(II), zinc(II), and cobalt(II)

complexes with similar hydroxy-rich Schiff bases’, J. Coord. Chem., vol. 65, no. 2, pp. 339–352, doi:

1080/00958972.2011.653785.

S. K. Dey and A. Mukherjee, (2014). ‘The synthesis, characterization and catecholase activity of

dinuclear cobalt(ii/iii) complexes of an O-donor rich Schiff base ligand’, New J. Chem., vol. 38, no. 10, pp.

–4995, doi: 10.1039/c4nj00715h. DOI: https://doi.org/10.1039/C4NJ00715H

A. Banerjee and S. Chattopadhyay, (2019). ‘Synthesis and characterization of mixed valence

cobalt(III)/cobalt(II) complexes with N,O-donor Schiff base ligands’, Polyhedron, vol. 159, no. Iii, pp. 1–11,

doi: 10.1016/j.poly.2018.10.059. DOI: https://doi.org/10.1016/j.poly.2018.10.059

P. P. Yang et al (2010). ‘Syntheses, crystal structures and magnetic properties of a novel family of pentamanganese complexes derived from an assembly system containing polydentate hydroxy-rich Schiff-base

ligands’, Dalt. Trans., vol. 39, no. 27, pp. 6285–6294, doi: 10.1039/c0dt00291g. DOI: https://doi.org/10.1039/c0dt00291g

C. Garino and L. Salassa, (2013). ‘The photochemistry of transition metal complexes using density

functional theory’, Philos. Trans. R. Soc. A, vol. 371, no. 1995, doi: 10.1098/rsta.2012.0134. DOI: https://doi.org/10.1098/rsta.2012.0134

S. Noreen and S. H. Sumrra, (2021). ‘Aminothiazole-Linked Metal Chelates: Synthesis, Density

Functional Theory, and Antimicrobial Studies with Antioxidant Correlations’, ACS Omega, vol. 6, no. 48,

pp. 33085–33099, doi: 10.1021/acsomega.1c05290. DOI: https://doi.org/10.1021/acsomega.1c05290

A. U. Hassan et al., (2022). ‘New organosulfur metallic compounds as potent drugs: synthesis, molecular

modeling, spectral, antimicrobial, drug likeness and DFT analysis’, Mol. Divers., vol. 26, no. 1, pp. 51–72,

doi: 10.1007/s11030-020-10157-4. DOI: https://doi.org/10.1007/s11030-020-10157-4

S. C. Qi et al (2010). ‘Application of Density Functional Theory in the Calculations Involving Metal

Complexes’, RSC Adv., vol. 6, no. 81, pp. 77375–77395, 2016, doi: 10.1039/c6ra16168e. DOI: https://doi.org/10.1039/C6RA16168E

M. J. Frisch et al., ‘Gaussian 09, Revision B.01’. Gaussian Inc., Wallingford.

Shehnaz, W. A. et al., (2023). ‘Sulfonamide derived Schiff base Mn (II), Co (II), and Ni (II) complexes:

Crystal structures, density functional theory and Hirshfeld surface analysis’, Appl. Organomet. Chem., vol.

, no. 6, p. e7077, Jun. doi: https://doi.org/10.1002/aoc.7077. DOI: https://doi.org/10.1002/aoc.7077

H. Kargar et al., (2022). ‘Synthesis, crystal structure, spectral characterization, catalytic studies and

computational studies of Ni(II) and Pd(II) complexes of symmetrical tetradentate Schiff base ligand’, J.

Coord. Chem., vol. 75, no. 7–8, pp. 972–993, Apr. doi: 10.1080/00958972.2022.2092846. DOI: https://doi.org/10.1080/00958972.2022.2092846

R. H. H. Salih et al., (2023). ‘Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis,

biological evaluation, molecular docking, DFT studies and POM analysis’, J. Mol. Struct., vol. 1282, p.

, doi: https://doi.org/10.1016/j.molstruc.2023.135191. DOI: https://doi.org/10.1016/j.molstruc.2023.135191

K. Anbukarasi et al., (2023). ‘DFT and Molecular Docking Analysis of Newly Synthesized Compound

(2E)-3-[3-(Benzyloxy) Phenyl]-1-(4’-Chlorophe-Nyl)-2-Propen-1-One [Bpclpo]’, Current Physical

Chemistry, vol. 13. pp. 1–38, doi: http://dx.doi.org/10.2174/1877946812666220928102954. DOI: https://doi.org/10.2174/1877946812666220928102954

D. S. E. Sayed and E. S. M. Abdelrehim, (2022). ‘Spectroscopic details on the molecular structure of

pyrimidine‑2‑thiones heterocyclic compounds: computational and antiviral activity against the main protease

enzyme of SARS-CoV-2’, BMC Chem., vol. 16, no. 1, pp. 1–18, doi: 10.1186/s13065-022-00881-3. DOI: https://doi.org/10.1186/s13065-022-00881-3

S. Chiodo, et al., (2006). ‘LANL2DZ basis sets recontracted in the framework of density functional

theory’, J. Chem. Phys., vol. 125, no. 10, doi: 10.1063/1.2345197. DOI: https://doi.org/10.1063/1.2345197

Y. Yang et al., (2009). ‘Assessment of the “6-31+Gt; + LANL2DZ” mixed basis set coupled with density DOI: https://doi.org/10.1021/jp807643p

functional theory methods and the effective core potential: Prediction of heats of formation and ionization

potentials for first-row-transition-metal complexes’, J. Phys. Chem. A, vol. 113, no. 36, pp. 9843–9851, doi:

1021/jp807643p.

L. E. Roy et al., (2008). ‘Revised basis sets for the LANL effective core potentials’, J. Chem. Theory

Comput., vol. 4, no. 7, pp. 1029–1031, doi: 10.1021/ct8000409. DOI: https://doi.org/10.1021/ct8000409

Semenov, ‘Chemcraft’. 2021, [Online]. Available: https://www.chemcraftprog.com/.

‘GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc.,

Shawnee Mission, KS, 2016.’ [Online]. Available:

https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2130491

R. H. H. Salih et al., (2022). ‘One-pot synthesis, molecular docking, ADMET, and DFT studies of novel

pyrazolines as promising SARS-CoV-2 main protease inhibitors’, Res. Chem. Intermed., vol. 48, no. 11, pp.

–4751, doi: 10.1007/s11164-022-04831-5. DOI: https://doi.org/10.1007/s11164-022-04831-5

G. Serdaroğlu et al., (2021). ‘Carbazole derivatives: Synthesis, spectroscopic characterization,

antioxidant activity, molecular docking study, and the quantum chemical calculations’, J. Mol. Liq., vol. 330,

doi: 10.1016/j.molliq.2021.115651. DOI: https://doi.org/10.1016/j.molliq.2021.115651

https://cccbdb.nist.gov/vibscalejust.asp’. https://cccbdb.nist.gov/vibscalejust.asp.

T. Lu and F. Chen, (2012). ‘Multiwfn: A multifunctional wavefunction analyzer’, J. Comput. Chem., vol.

, no. 5, pp. 580–592, doi: 10.1002/jcc.22885. DOI: https://doi.org/10.1002/jcc.22885

T. A. Alorini et al., (2022). ‘Synthesis, characterization, and anticancer activity of some metal complexes

with a new Schiff base ligand’, Arab. J. Chem., vol. 15, no. 2, p. 103559, doi: 10.1016/j.arabjc.2021.103559. DOI: https://doi.org/10.1016/j.arabjc.2021.103559

C. Ding et al., (2013). ‘Polynuclear complexes with alkoxo and phenoxo bridges from in situ generated

hydroxy-rich Schiff base ligands: Syntheses, structures, and magnetic properties’, Chem. - A Eur. J., vol. 19,

no. 30, pp. 9961–9972, doi: 10.1002/chem.201301041. DOI: https://doi.org/10.1002/chem.201301041

D. I. Tofiq, et al., (2021). ‘Preparation of a novel Mixed-Ligand divalent metal complexes from solvent

free Synthesized Schiff base derived from 2,6-Diaminopyridine with cinnamaldehyde and 2,2′‐Bipyridine:

Characterization and antibacterial activities’, Arab. J. Chem., vol. 14, no. 12, p. 103429, doi:

1016/j.arabjc.2021.103429. DOI: https://doi.org/10.1016/j.actpsy.2021.103429

B. M. Kukovec et al., (2008). ‘Synthesis and structure of cobalt(II) complexes with hydroxyl derivatives

of pyridinecarboxylic acids: Conformation analysis of ligands in the solid state’, J. Mol. Struct., vol. 882, no.

–3, pp. 47–55, doi: 10.1016/j.molstruc.2007.09.011. DOI: https://doi.org/10.1016/j.molstruc.2007.09.011

S. A. Aboafia et al., (2018). ‘New transition metal complexes of 2,4-dihydroxybenzaldehyde

benzoylhydrazone Schiff base (H2dhbh): Synthesis, spectroscopic characterization, DNA binding/cleavage

and antioxidant activity’, J. Mol. Struct., vol. 1158, pp. 39–50, doi: 10.1016/j.molstruc.2018.01.008. DOI: https://doi.org/10.1016/j.molstruc.2018.01.008

R. Takjoo et al., ‘Co(III) and Fe(III) complexes of Schiff bases derived from 2,4-dihydroxybenzaldehyde

S-allyl-isothiosemicarbazonehydrobromide’, J. Coord. Chem., vol. 66, no. 22, pp. 3915–3925, 2013, doi: DOI: https://doi.org/10.1080/00958972.2013.856420

1080/00958972.2013.856420.

Y. Lu, et al., (2012). ‘Synthesis, structures, and urease inhibition of nickel(II), zinc(II), and cobalt(II) DOI: https://doi.org/10.1080/00958972.2011.653785

complexes with similar hydroxy-rich Schiff bases’, J. Coord. Chem., vol. 65, no. 2, pp. 339–352, doi:

1080/00958972.2011.653785.

A. C. Ekennia et al., (2015). ‘Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II),

Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate’,

Bioinorg. Chem. Appl., vol. 2015, pp. 1–12, doi: 10.1155/2015/789063. DOI: https://doi.org/10.1155/2015/789063

K. A. Abdalkarim et al., (2021). ‘Synthesis of Hg metal complex and its application to reduce the optical

band gap of polymer’, Arab. J. Chem., vol. 14, no. 7, p. 103215, doi: 10.1016/j.arabjc.2021.103215. DOI: https://doi.org/10.1016/j.arabjc.2021.103215

S. Dutta Gupta et al., (2015). ‘2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90

inhibitors: Rational identification of a new anticancer lead’, Bioorg. Chem., vol. 59, pp. 97–105, doi:

1016/j.bioorg.2015.02.003. DOI: https://doi.org/10.1088/1475-7516/2015/02/003

S. Shaygan, et al., (2018). ‘Cobalt (II) complexes with Schiffbase ligands derived from

terephthalaldehyde and ortho-substituted anilines: Synthesis, characterization and antibacterial activity’,

Appl. Sci., vol. 8, no. 3, doi: 10.3390/app8030385. DOI: https://doi.org/10.3390/app8030385

A. S. Alturiqi et al., (2018). ‘Synthesis, Spectral Characterization, and Thermal and Cytotoxicity Studies

of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Complexes of Schiff Base Derived from 5-

Hydroxymethylfuran-2-carbaldehyde’, J. Chem., vol. 2018, doi: 10.1155/2018/5816906. DOI: https://doi.org/10.1155/2018/5816906

M. Mohamed Subarkhan and R. Ramesh, (2015). ‘Binuclear ruthenium(III) bis(thiosemicarbazone)

complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol’, Spectrochim.

Acta - Part A Mol. Biomol. Spectrosc., vol. 138, no. Iii, pp. 264–270, doi: 10.1016/j.saa.2014.11.039. DOI: https://doi.org/10.1016/j.saa.2014.11.039

L. A. Saghatforoush et al., (2009). ‘Iron(III) Schiff base complexes with asymmetric tetradentate ligands:

Synthesis, spectroscopy, and antimicrobial properties’, Transit. Met. Chem., vol. 34, no. 8, pp. 899–904, doi:

1007/s11243-009-9279-8.

A. N. E. and Y. Z. A. A.M. Nassar*, A.M. Hassan, (2012). ‘Synthesis and characterization of novel

binuclear complexes’, Int. J. Chem. Biochem. Sci., vol. 2, pp. 83–93.

J. T. P. Matshwele et al., (2020). ‘Synthesis of Mixed Ligand Ruthenium (II/III) Complexes and Their

Antibacterial Evaluation on Drug-Resistant Bacterial Organisms’, J. Chem., vol. 2020, doi: DOI: https://doi.org/10.1155/2020/2150419

1155/2020/2150419.

J. Joseph et al., (2013). ‘Synthesis, characterization and antimicrobial activities of copper complexes

derived from 4-aminoantipyrine derivatives’, J. Saudi Chem. Soc., vol. 17, no. 3, pp. 285–294, doi:

1016/j.jscs.2011.04.007. DOI: https://doi.org/10.1088/1475-7516/2011/04/007

A. Palanimurugan et al., (2019). ‘Electrochemical behavior, structural, morphological, Calf ThymusDNA interaction and in-vitro antimicrobial studies of synthesized Schiff base transition metal complexes’,

Heliyon, vol. 5, no. 7, p. e02039, doi: 10.1016/j.heliyon.2019.e02039. DOI: https://doi.org/10.1016/j.heliyon.2019.e02039

B. A. Ismail et al., (2021). ‘Synthesis, characterization, thermal, DFT computational studies and

anticancer activity of furfural-type schiff base complexes’, J. Mol. Struct., vol. 1227, p. 129393, doi:

https://doi.org/10.1016/j.molstruc.2020.129393. DOI: https://doi.org/10.1016/j.molstruc.2020.129393

S. F. A. Kettle, (2021). ‘Stability of coordination compounds’, in Physical Inorganic Chemistry, 1996, DOI: https://doi.org/10.1007/978-3-662-25191-1

pp. 73–94.

N. Al-Zaqri et al., ‘Structural investigations, quantum mechanical studies on proton and metal affinity

and biological activity predictions of selpercatinib’, J. Mol. Liq., vol. 325, p. 114765, doi:

1016/j.molliq.2020.114765.

P. Geerlings and F. De Proft, (2002). ‘Chemical reactivity as described by quantum chemical methods’, DOI: https://doi.org/10.1002/chin.200247275

Int. J. Mol. Sci., vol. 3, no. 4, pp. 276–309, doi: 10.3390/i3040276. DOI: https://doi.org/10.3390/i3040276

S. H. Sumrra et al., (2022). ‘Metal incorporated sulfonamides as promising multidrug targets: Combined

enzyme inhibitory, antimicrobial, antioxidant and theoretical exploration’, J. Mol. Struct., vol. 1250, p.

, doi: https://doi.org/10.1016/j.molstruc.2021.131710. DOI: https://doi.org/10.1016/j.molstruc.2021.131710

G. Mustafa et al., (2022). ‘A critical review on recent trends on pharmacological applications of

pyrazolone endowed derivatives’, J. Mol. Struct., vol. 1262, p. 133044, doi:

https://doi.org/10.1016/j.molstruc.2022.133044. DOI: https://doi.org/10.1016/j.molstruc.2022.133044

S. H. Sumrra et al., (2022). ‘A review on the biomedical efficacy of transition metal triazole compounds’,

J. Coord. Chem., vol. 75, no. 3–4, pp. 293–334, Feb. doi: 10.1080/00958972.2022.2059359. DOI: https://doi.org/10.1080/00958972.2022.2059359

A. U. Hassan et al., (2021). ‘Design, facile synthesis, spectroscopic characterization, and medicinal

probing of metal-based new sulfonamide drugs: A theoretical and spectral study’, Appl. Organomet. Chem.,

vol. 35, no. 1, pp. 1–17, doi: 10.1002/aoc.6054. DOI: https://doi.org/10.1002/aoc.6054

F. N. Sayed et al., (2023). ‘Structural characterization and molecular docking studies of biologically

active platinum(II) and palladium(II) complexes of ferrocenyl Schiff bases’, J. Mol. Struct., vol. 1278, p.

, doi: 10.1016/j.molstruc.2023.134904. DOI: https://doi.org/10.1016/j.molstruc.2023.134904

Y. A. A. Alghuwainem et al., (2023). ‘Synthesis, structural, DFT, antibacterial, antifungal, antiinflammatory, and molecular docking analysis of new VO(II), Fe(III), Mn(II), Zn(II), and Ag(I) complexes DOI: https://doi.org/10.1016/j.molliq.2022.120936

based on 4-((2-hydroxy-1-naphthyl)azo) benzenesulfonamide’, J. Mol. Liq., vol. 369, p. 120936, doi:

1016/j.molliq.2022.120936.

M. H. Soliman and G. G. Mohamed, (2012). ‘Preparation, spectroscopic and thermal characterization of

new metal complexes of verlipride drug. in vitro biological activity studies’, Spectrochim. Acta - Part A Mol.

Biomol. Spectrosc., vol. 91, pp. 11–17, doi: 10.1016/j.saa.2012.01.021. DOI: https://doi.org/10.1016/j.saa.2012.01.021

Published

2023-12-20

How to Cite

Trivalent Metal Complexes of Rich-Hyrdoxy Schiff base Ligand: Synthesis, Characterization, DFT Calculations and Antimicrobial Activity. (2023). Journal of Zankoy Sulaimani - Part A, 25(2), 25. https://doi.org/10.17656/jzs.10911